5,587 research outputs found

    Microwave Driven Magnetic Plasma Accelerator Studies (CYCLOPS)

    Get PDF
    A microwave-driven cyclotron resonance plasma acceleration device was investigated using argon, krypton, xenon, and mercury as propellants. Limited ranges of propellant flow rate, input power, and magnetic field strength were used. Over-all efficiencies (including the 65% efficiency of the input polarizer) less than 10% were obtained for specific impulse values between 500 and 1500 sec. Power transfer efficiencies, however, approached 100% of the input power available in the right-hand component of the incident circularly polarized radiation. Beam diagnostics using Langmuir probes, cold gas mapping, r-f mapping and ion energy analyses were performed in conjunction with an engine operating in a pulsed mode. Measurements of transverse electron energies at the position of cyclotron resonant absorption yielded energy values more than an order of magnitude lower than anticipated. The measured electron energies were, however, consistent with the low values of average ion energy measured by retarding potential techniques. The low values of average ion energy were also consistent with the measured thrust values. It is hypothesized that ionization and radiation limit the electron kinetic energy to low-values thus limiting the energy which is finally transferred to the ion. Thermalization by electron-electron collision was also identified as an additional loss mechanism. The use of light alkali metals, which have relatively few low lying energy levels to excite, with the input power to mass ratio selected so as to limit the electron energies to less than the second ionization potential, is suggested. It is concluded, however, that the over-all efficiency for such propellants would be less than 40 per cent

    The turbulent pressure support in galaxy clusters revisited

    Full text link
    Due to their late formation in cosmic history, clusters of galaxies are not fully in hydrostatic equilibrium and the gravitational pull of their mass at a given radius is expected not to be entirely balanced by the thermal gas pressure. Turbulence may supply additional pressure, and recent (X-ray and SZ) hydrostatic mass reconstructions claim a pressure support of 515%\sim 5-15\% of the total pressure at R200R_{\rm 200}. In this work we show that, after carefully disentangling bulk from small-scale turbulent motions in high-resolution simulations of galaxy clusters, we can constrain which fraction of the gas kinetic energy effectively provides pressure support in the cluster's gravitational potential. While the ubiquitous presence of radial inflows in the cluster can lead to significant bias in the estimate of the non-thermal pressure support, we report that only a part of this energy effectively acts as a source of pressure, providing a support of the order of 10%\sim 10\% of the total pressure at R200R_{\rm 200}.Comment: 5 pages, 5 pages, accepted, to appear in MNRAS Letter

    Turbulent pressure support and hydrostatic mass-bias in the intracluster medium

    Full text link
    The degree of turbulent pressure support by residual gas motions in galaxy clusters is not well known. Mass modelling of combined X-ray and Sunyaev Zel'dovich observations provides an estimate of turbulent pressure support in the outer regions of several galaxy clusters. Here, we test two different filtering techniques to disentangle bulk from turbulent motions in non-radiative high-resolution cosmological simulations of galaxy clusters using the cosmological hydro code ENZO. We find that the radial behavior of the ratio of non-thermal pressure to total gas pressure as a function of cluster-centric distance can be described by a simple polynomial function. The typical non-thermal pressure support in the centre of clusters is \sim5%, increasing to \sim15% in the outskirts, in line with the pressure excess found in recent X-ray observations. While the complex dynamics of the ICM makes it impossible to reconstruct a simple correlation between turbulent motions and hydrostatic bias, we find that a relation between them can be established using the median properties of a sample of objects. Moreover, we estimate the contribution of radial accelerations to the non-thermal pressure support and conclude that it decreases moving outwards from 40% (in the core) to 15% (in the cluster's outskirts). Adding this contribution to one provided by turbulence, we show that it might account for the entire observed hydrostatic bias in the innermost regions of the clusters, and for less than 80% of it at r>0.8r200,mr > 0.8 r_{200, m}.Comment: 20 pages; 21 figures; Substantial Revision; MNRAS in pres

    Reconstruction of the two-dimensional gravitational potential of galaxy clusters from X-ray and Sunyaev-Zel'dovich measurements

    Get PDF
    The mass of galaxy clusters is not a direct observable, nonetheless it is commonly used to probe cosmological models. Based on the combination of all main cluster observables, that is, the X-ray emission, the thermal Sunyaev-Zel'dovich (SZ) signal, the velocity dispersion of the cluster galaxies, and gravitational lensing, the gravitational potential of galaxy clusters can be jointly reconstructed. We derive the two main ingredients required for this joint reconstruction: the potentials individually reconstructed from the observables and their covariance matrices, which act as a weight in the joint reconstruction. We show here the method to derive these quantities. The result of the joint reconstruction applied to a real cluster will be discussed in a forthcoming paper. We apply the Richardson-Lucy deprojection algorithm to data on a two-dimensional (2D) grid. We first test the 2D deprojection algorithm on a β\beta-profile. Assuming hydrostatic equilibrium, we further reconstruct the gravitational potential of a simulated galaxy cluster based on synthetic SZ and X-ray data. We then reconstruct the projected gravitational potential of the massive and dynamically active cluster Abell 2142, based on the X-ray observations collected with XMM-Newton and the SZ observations from the Planck satellite. Finally, we compute the covariance matrix of the projected reconstructed potential of the cluster Abell 2142 based on the X-ray measurements collected with XMM-Newton. The gravitational potentials of the simulated cluster recovered from synthetic X-ray and SZ data are consistent, even though the potential reconstructed from X-rays shows larger deviations from the true potential. Regarding Abell 2142, the projected gravitational cluster potentials recovered from SZ and X-ray data reproduce well the projected potential inferred from gravitational-lensing observations. (abridged)Comment: accepted for publication in the journal A&

    Genome of the carbapenemase-producing clinical isolate Elizabethkingia miricola EM_CHUV and comparative genomics with Elizabethkingia meningoseptica and Elizabethkingia anophelis: evidence for intrinsic multidrug resistance trait of emerging pathogens.

    Get PDF
    Elizabethkingia miricola is a Gram-negative non-fermenting rod emerging as a life-threatening human pathogen. The multidrug-resistant (MDR) carbapenemase-producing clinical isolate E. miricola EM_CHUV was recovered in the setting of severe nosocomial pneumonia. In this study, the genome of E. miricola EM_CHUV was sequenced and a functional analysis was performed, including a comparative genomic study with Elizabethkingia meningoseptica and Elizabethkingia anophelis. The resistome of EM_CHUV revealed the presence of a high number of resistance genes, including the presence of the blaGOB-13 and blaB-9 carbapenemase-encoding genes. Twelve mobility genes, with only two of them located in the proximity of resistance genes, and four potential genomic islands were identified in the genome of EM_CHUV, but no prophages or CRISPR sequences. Ten restriction-modification system (RMS) genes were also identified. In addition, we report the presence of a putative conjugative plasmid (pEM_CHUV) that does not encode any antibiotic resistance genes. Altogether, these findings point towards a limited number of DNA exchanges with other bacteria and suggest that multidrug resistance is an intrinsic trait of E. miricola owing to the presence of a high number of resistance genes within the bacterial core genome

    Is Feature Selection Secure against Training Data Poisoning?

    Get PDF
    Learning in adversarial settings is becoming an important task for application domains where attackers may inject malicious data into the training set to subvert normal operation of data-driven technologies. Feature selection has been widely used in machine learning for security applications to improve generalization and computational efficiency, although it is not clear whether its use may be beneficial or even counterproductive when training data are poisoned by intelligent attackers. In this work, we shed light on this issue by providing a framework to investigate the robustness of popular feature selection methods, including LASSO, ridge regression and the elastic net. Our results on malware detection show that feature selection methods can be significantly compromised under attack (we can reduce LASSO to almost random choices of feature sets by careful insertion of less than 5% poisoned training samples), highlighting the need for specific countermeasures

    Tuning Heavy Fermion Systems into Quantum Criticality by Magnetic Field

    Full text link
    We discuss a series of thermodynamic, magnetic and electrical transport experiments on the two heavy fermion compounds CeNi2Ge2 and YbRh2Si2 in which magnetic fields, B, are used to tune the systems from a Non-Fermi liquid (NFL) into a field-induced FL state. Upon approaching the quantum-critical points from the FL side by reducing B we analyze the heavy quasiparticle (QP) mass and QP-QP scattering cross sections. For CeNi2Ge2 the observed behavior agrees well with the predictions of the spin-density wave (SDW) scenario for three-dimensional (3D) critical spin-fluctuations. By contrast, the observed singularity in YbRh2Si2 cannot be explained by the itinerant SDW theory for neither 3D nor 2D critical spinfluctuations. Furthermore, we investigate the magnetization M(B) at high magnetic fields. For CeNi2Ge2 a metamagnetic transition is observed at 43 T, whereas for YbRh2Si2 a kink-like anomaly occurs at 10 T in M vs B (applied along the easy basal plane) above which the heavy fermion state is completely suppressed.Comment: 15 pages, 8 figures, submitted to Journal of Low Temperature Physics, special Series on "High Magnetic Field Facilities

    Complete hierarchies of efficient approximations to problems in entanglement theory

    Full text link
    We investigate several problems in entanglement theory from the perspective of convex optimization. This list of problems comprises (A) the decision whether a state is multi-party entangled, (B) the minimization of expectation values of entanglement witnesses with respect to pure product states, (C) the closely related evaluation of the geometric measure of entanglement to quantify pure multi-party entanglement, (D) the test whether states are multi-party entangled on the basis of witnesses based on second moments and on the basis of linear entropic criteria, and (E) the evaluation of instances of maximal output purities of quantum channels. We show that these problems can be formulated as certain optimization problems: as polynomially constrained problems employing polynomials of degree three or less. We then apply very recently established known methods from the theory of semi-definite relaxations to the formulated optimization problems. By this construction we arrive at a hierarchy of efficiently solvable approximations to the solution, approximating the exact solution as closely as desired, in a way that is asymptotically complete. For example, this results in a hierarchy of novel, efficiently decidable sufficient criteria for multi-particle entanglement, such that every entangled state will necessarily be detected in some step of the hierarchy. Finally, we present numerical examples to demonstrate the practical accessibility of this approach.Comment: 14 pages, 3 figures, tiny modifications, version to be published in Physical Review
    corecore