6,843 research outputs found

    Properties of gas clumps and gas clumping factor in the intra cluster medium

    Full text link
    The spatial distribution of gas matter inside galaxy clusters is not completely smooth, but may host gas clumps associated with substructures. These overdense gas substructures are generally a source of unresolved bias of X-ray observations towards high density gas, but their bright luminosity peaks may be resolved sources within the ICM, that deep X-ray exposures may be (already) capable to detect. In this paper we aim at investigating both features, using a set of high-resolution cosmological simulations with ENZO. First, we monitor how the bias by unresolved gas clumping may yield incorrect estimates of global cluster parameters and affects the measurements of baryon fractions by X-ray observations. We find that based on X-ray observations of narrow radial strips, it is difficult to recover the real baryon fraction to better than 10 - 20 percent uncertainty. Second, we investigated the possibility of observing bright X-ray clumps in the nearby Universe (z<=0.3). We produced simple mock X-ray observations for several instruments (XMM, Suzaku and ROSAT) and extracted the statistics of potentially detectable bright clumps. Some of the brightest clumps predicted by simulations may already have been already detected in X- ray images with a large field of view. However, their small projected size makes it difficult to prove their existence based on X-ray morphology only. Preheating, AGN feedback and cosmic rays are found to have little impact on the statistical properties of gas clumps.Comment: 17 pages, 11 figures. MNRAS accepte

    Back and forth from cool core to non-cool core: clues from radio-halos

    Full text link
    X-ray astronomers often divide galaxy clusters into two classes: "cool core" (CC) and "non-cool core" (NCC) objects. The origin of this dichotomy has been the subject of debate in recent years, between "evolutionary" models (where clusters can evolve from CC to NCC, mainly through mergers) and "primordial" models (where the state of the cluster is fixed "ab initio" by early mergers or pre-heating). We found that in a well-defined sample (clusters in the GMRT Radio halo survey with available Chandra or XMM-Newton data), none of the objects hosting a giant radio halo can be classified as a cool core. This result suggests that the main mechanisms which can start a large scale synchrotron emission (most likely mergers) are the same that can destroy CC and therefore strongly supports "evolutionary" models of the CC-NCC dichotomy. Moreover combining the number of objects in the CC and NCC state with the number of objects with and without a radio-halo, we estimated that the time scale over which a NCC cluster relaxes to the CC state, should be larger than the typical life-time of radio-halos and likely shorter than about 3 Gyr. This suggests that NCC transform into CC more rapidly than predicted from the cooling time, which is about 10 Gyr in NCC systems, allowing the possibility of a cyclical evolution between the CC and NCC states.Comment: Accepted for publication in A&

    Gas clumping in galaxy clusters

    Get PDF
    The reconstruction of galaxy cluster's gas density profiles is usually performed by assuming spherical symmetry and averaging the observed X-ray emission in circular annuli. In the case of a very inhomogeneous and asymmetric gas distribution, this method has been shown to return biased results in numerical simulations because of the n2n^2 dependence of the X-ray emissivity. We propose a method to recover the true density profiles in the presence of inhomogeneities, based on the derivation of the azimuthal median of the surface brightness in concentric annuli. We demonstrate the performance of this method with numerical simulations, and apply it to a sample of 31 galaxy clusters in the redshift range 0.04-0.2 observed with ROSAT/PSPC. The clumping factors recovered by comparing the mean and the median are mild and show a slight trend of increasing bias with radius. For R<R500R<R_{500}, we measure a clumping factor C<1.1\sqrt{C}<1.1, which indicates that the thermodynamic properties and hydrostatic masses measured in this radial range are only mildly affected by this effect. Comparing our results with three sets of hydrodynamical numerical simulations, we found that non-radiative simulations significantly overestimate the level of inhomogeneities in the ICM, while the runs including cooling, star formation, and AGN feedback reproduce the observed trends closely. Our results indicate that most of the accretion of X-ray emitting gas is taking place in the diffuse, large-scale accretion patterns rather than in compact structures.Comment: 12 pages, 11 figures, accepted for publication in MNRAS. Largely-improved version compared to v1, method and comparison with simulations update

    The cool core state of Planck SZ-selected clusters versus X-ray selected samples: evidence for cool core bias

    Get PDF
    We characterized the population of galaxy clusters detected with the SZ effect with Planck, by measuring the cool core state of the objects in a well-defined subsample of the Planck catalogue. We used as indicator the concentration parameter Santos et al. (2008). The fraction of cool core clusters is 29±4%29 \pm 4 \% and does not show significant indications of evolution in the redshift range covered by our sample. We compare the distribution of the concentration parameter in the Planck sample with the one of the X-ray selected sample MACS (Mann & Ebeling, 2011): the distributions are significantly different and the cool core fraction in MACS is much higher (59±5%59 \pm 5 \%). Since X-ray selected samples are known to be biased towards cool cores due to the presence of their prominent surface brightness peak, we simulated the impact of the "cool core bias" following Eckert et al. (2011). We found that it plays a large role in the difference between the fractions of cool cores in the two samples. We examined other selection effects that could in principle bias SZ-surveys against cool cores but we found that their impact is not sufficient to explain the difference between Planck and MACS. The population of X-ray under-luminous objects, which are found in SZ-surveys but missing in X-ray samples (Planck Collaboration 2016), could possibly contribute to the difference, as we found most of them to be non cool cores, but this hypothesis deserves further investigation.Comment: Accepted for publication in MNRA

    The turbulent pressure support in galaxy clusters revisited

    Full text link
    Due to their late formation in cosmic history, clusters of galaxies are not fully in hydrostatic equilibrium and the gravitational pull of their mass at a given radius is expected not to be entirely balanced by the thermal gas pressure. Turbulence may supply additional pressure, and recent (X-ray and SZ) hydrostatic mass reconstructions claim a pressure support of ∼5−15%\sim 5-15\% of the total pressure at R200R_{\rm 200}. In this work we show that, after carefully disentangling bulk from small-scale turbulent motions in high-resolution simulations of galaxy clusters, we can constrain which fraction of the gas kinetic energy effectively provides pressure support in the cluster's gravitational potential. While the ubiquitous presence of radial inflows in the cluster can lead to significant bias in the estimate of the non-thermal pressure support, we report that only a part of this energy effectively acts as a source of pressure, providing a support of the order of ∼10%\sim 10\% of the total pressure at R200R_{\rm 200}.Comment: 5 pages, 5 pages, accepted, to appear in MNRAS Letter

    Exotic magnetic orders for high spin ultracold fermions

    Full text link
    We study Hubbard models for ultracold bosonic or fermionic atoms loaded into an optical lattice. The atoms carry a high spin F>1/2F>1/2, and interact on site via strong repulsive Van der Waals forces. Making convenient rearrangements of the interaction terms, and exploiting their symmetry properties, we derive low energy effective models with nearest-neighbor interactions, and their properties. We apply our method to F=3/2F=3/2, and 5/2 fermions on two-dimensional square lattice at quarter, and 1/6 fillings, respectively, and investigate mean-field equations for repulsive couplings. We find for F=3/2F=3/2 fermions that the plaquette state appearing in the highly symmetric SU(4) case does not require fine tuning, and is stable in an extended region of the phase diagram. This phase competes with an SU(2) flux state, that is always suppressed for repulsive interactions in absence of external magnetic field. The SU(2) flux state has, however, lower energy than the plaquette phase, and stabilizes in the presence of weak applied magnetic field. For F=5/2F=5/2 fermions a similar SU(2) plaquette phase is found to be the ground state without external magnetic field.Comment: final version, 6 pages, 4 figures, epl forma
    • …
    corecore