9 research outputs found

    Chiral criticality in doped Mn1−y_{1-y}Fey_ySi compounds

    Full text link
    The critical spin fluctuations in doped compounds Mn1−y_{1-y}Fey_ySi have been studied by means of ac-susceptibility measurements, polarized neutron small angle scattering and spin echo spectroscopy. It is shown that these compounds undergo the transition from the paramagnetic to helimagnetic phase through continuous, yet well distinguishable crossovers: (i) from paramagnetic to partially chiral, (ii) from partially chiral to highly chiral fluctuating state. The crossover points are identified on the basis of combined analysis of the temperature dependence of ac-susceptibility and polarized SANS data. The whole transition is marked by two inflection point of the temperature dependence of ac-susceptibility: the upper one corresponds to the crossover to partially chiral state at T∗T^*, where the inverse correlation length Îș≈2k\kappa \approx 2 k, the lower one corresponds to the transition to the spin helix structure. The intermediate crossover to the highly chiral phase is observed at the inflection point TkT_k of the first derivative of ac-susceptibility, where Îș≈k\kappa \approx k. The temperature crossovers to the highly chiral fluctuating state is associated with the enhancing influence of the Dzyaloshinskii-Moria interaction close to TcT_c.Comment: 5 pages, 5 figures, 1 table, 13 cite

    Observation of Ferromagnetic Clusters in Bi0.125Ca0.875MnO3

    Full text link
    The electron doped manganite system, Bi0.125Ca0.875MnO3, exhibits large bulk magnetization of unknown origin. To select amongst possible magnetic ordering models, we have conducted temperature and magnetic field dependent small-angle neutron scattering measurements. Nontrivial spin structure has been revealed. Ferromagnetic spin clusters form in the antiferromagnetic background when temperature is decreased to Tc~108K. With a further reduction in temperature or the application of external magnetic field, the clusters begin to form in larger numbers, which gives an overall enhancement of magnetization below Tc.Comment: 14 pages, 6 figue

    Observation of ferromagnetic clusters in Bi 0.125 Ca 0.875 MnO 3 Observation of ferromagnetic clusters in Bi 0.125 Ca 0.875 MnO 3

    No full text
    Abstract The electron doped manganite system, Bi 0.125 Ca 0.875 MnO 3 , exhibits large bulk magnetization of unknown origin. To select amongst possible magnetic ordering models, we have conducted temperature and magnetic field dependent small-angle neutron scattering measurements. Non-trivial spin structure has been revealed. Ferromagnetic spin clusters form in the antiferromagnetic background when temperature is decreased to T c ∌ 108 K. With a further reduction in temperature or the application of external magnetic field, the clusters begin to form in larger numbers, which gives an overall enhancement of magnetization below T c

    Application of In Situ Neutron and X-Ray Measurements at High Temperatures in the Development of Co-Re-Based Alloys for Gas Turbines

    No full text
    Co-Re alloy development is prompted by the search for new materials for future gas turbines which can be used at temperatures considerably higher than the current day single crystal Ni-based superalloys. The Co-Re-based alloys have been designed to have very high melting range, and they are meant for application at +373 K (+100 °C) above Ni-superalloys. They are significantly different from the conventional Co-based alloys that are used in static components of today’s gas turbines, and the Co-Re alloys have never been used for structural applications before. The Co-Re-Cr system has complex microstructure with many different phases present. Phase transformations and stabilities of fine strengthening precipitates at high temperatures remain mostly unexplored in the Co-Re alloys, and to develop basic understanding, model ternary and quaternary compositions were studied within the alloy development program. In situ neutron and synchrotron measurements at high temperatures were extensively used for this purpose, and some recent results from the in situ measurements are presented. In particular, the effect of boron doping in Co-Re alloys and the stabilities of the fine TaC precipitates at high temperatures were investigated. A fine dispersion of TaC precipitates strengthens some Co-Re alloys, and their stabilities at the application temperatures are critical. In the beginning, the alloy development strategy is very briefly discussed

    Application of In Situ Neutron and X-Ray Measurements at High Temperatures in the Development of Co-Re-Based Alloys for Gas Turbines

    No full text
    Co-Re alloy development is prompted by the search for new materials for future gas turbines which can be used at temperatures considerably higher than the current day single crystal Ni-based superalloys. The Co-Re-based alloys have been designed to have very high melting range, and they are meant for application at +373 K (+100 °C) above Ni-superalloys. They are significantly different from the conventional Co-based alloys that are used in static components of today’s gas turbines, and the Co-Re alloys have never been used for structural applications before. The Co-Re-Cr system has complex microstructure with many different phases present. Phase transformations and stabilities of fine strengthening precipitates at high temperatures remain mostly unexplored in the Co-Re alloys, and to develop basic understanding, model ternary and quaternary compositions were studied within the alloy development program. In situ neutron and synchrotron measurements at high temperatures were extensively used for this purpose, and some recent results from the in situ measurements are presented. In particular, the effect of boron doping in Co-Re alloys and the stabilities of the fine TaC precipitates at high temperatures were investigated. A fine dispersion of TaC precipitates strengthens some Co-Re alloys, and their stabilities at the application temperatures are critical. In the beginning, the alloy development strategy is very briefly discussed
    corecore