1,527 research outputs found

    Comparative study of theoretical methods for nonequilibrium quantum transport

    Full text link
    We present a detailed comparison of three different methods designed to tackle nonequilibrium quantum transport, namely the functional renormalization group (fRG), the time-dependent density matrix renormalization group (tDMRG), and the iterative summation of real-time path integrals (ISPI). For the nonequilibrium single-impurity Anderson model (including a Zeeman term at the impurity site), we demonstrate that the three methods are in quantitative agreement over a wide range of parameters at the particle-hole symmetric point as well as in the mixed-valence regime. We further compare these techniques with two quantum Monte Carlo approaches and the time-dependent numerical renormalization group method.Comment: 19 pages, 7 figures; published versio

    Resistive flow in a weakly interacting Bose-Einstein condensate

    Get PDF
    We report the direct observation of resistive flow through a weak link in a weakly interacting atomic Bose-Einstein condensate. Two weak links separate our ring-shaped superfluid atomtronic circuit into two distinct regions, a source and a drain. Motion of these weak links allows for creation of controlled flow between the source and the drain. At a critical value of the weak link velocity, we observe a transition from superfluid flow to superfluid plus resistive flow. Working in the hydrodynamic limit, we observe a conductivity that is 4 orders of magnitude larger than previously reported conductivities for a Bose-Einstein condensate with a tunnel junction. Good agreement with zero-temperature Gross-Pitaevskii simulations and a phenomenological model based on phase slips indicate that the creation of excitations plays an important role in the resulting conductivity. Our measurements of resistive flow elucidate the microscopic origin of the dissipation and pave the way for more complex atomtronic devices.Comment: Version published in PR

    p75 neurotrophin receptor is a clock gene that regulates oscillatory components of circadian and metabolic networks.

    Get PDF
    The p75 neurotrophin receptor (p75(NTR)) is a member of the tumor necrosis factor receptor superfamily with a widespread pattern of expression in tissues such as the brain, liver, lung, and muscle. The mechanisms that regulate p75(NTR) transcription in the nervous system and its expression in other tissues remain largely unknown. Here we show that p75(NTR) is an oscillating gene regulated by the helix-loop-helix transcription factors CLOCK and BMAL1. The p75(NTR) promoter contains evolutionarily conserved noncanonical E-box enhancers. Deletion mutagenesis of the p75(NTR)-luciferase reporter identified the -1039 conserved E-box necessary for the regulation of p75(NTR) by CLOCK and BMAL1. Accordingly, gel-shift assays confirmed the binding of CLOCK and BMAL1 to the p75(NTR-)1039 E-box. Studies in mice revealed that p75(NTR) transcription oscillates during dark and light cycles not only in the suprachiasmatic nucleus (SCN), but also in peripheral tissues including the liver. Oscillation of p75(NTR) is disrupted in Clock-deficient and mutant mice, is E-box dependent, and is in phase with clock genes, such as Per1 and Per2. Intriguingly, p75(NTR) is required for circadian clock oscillation, since loss of p75(NTR) alters the circadian oscillation of clock genes in the SCN, liver, and fibroblasts. Consistent with this, Per2::Luc/p75(NTR-/-) liver explants showed reduced circadian oscillation amplitude compared with those of Per2::Luc/p75(NTR+/+). Moreover, deletion of p75(NTR) also alters the circadian oscillation of glucose and lipid homeostasis genes. Overall, our findings reveal that the transcriptional activation of p75(NTR) is under circadian regulation in the nervous system and peripheral tissues, and plays an important role in the maintenance of clock and metabolic gene oscillation

    Exact dynamics of interacting qubits in a thermal environment: Results beyond the weak coupling limit

    Full text link
    We demonstrate an exact mapping of a class of models of two interacting qubits in thermal reservoirs to two separate spin-bath problems. Based on this mapping, exact numerical simulations of the qubits dynamics can be performed, beyond the weak system-bath coupling limit. Given the time evolution of the system, we study, in a numerically exact way, the dynamics of entanglement between pair of qubits immersed in boson thermal baths, showing a rich phenomenology, including an intermediate oscillatory behavior, the entanglement sudden birth, sudden death, and revival. We find that stationary entanglement develops between the qubits due to their coupling to a thermal environment, unlike the isolated qubits case in which the entanglement oscillates. We also show that the occurrence of entanglement sudden death in this model depends on the portion of the zero and double excitation states in the subsystem initial state. In the long-time limit, analytic expressions are presented at weak system-bath coupling, for a range of relevant qubit parameters

    Exact results for nonlinear ac-transport through a resonant level model

    Get PDF
    We obtain exact results for the transport through a resonant level model (noninteracting Anderson impurity model) for rectangular voltage bias as a function of time. We study both the transient behavior after switching on the tunneling at time t = 0 and the ensuing steady state behavior. Explicit expressions are obtained for the ac-current in the linear response regime and beyond for large voltage bias. Among other effects, we observe current ringing and PAT (photon assisted tunneling) oscillations.Comment: 7 page

    Interferometric measurement of the current-phase relationship of a superfluid weak link

    Full text link
    Weak connections between superconductors or superfluids can differ from classical links due to quantum coherence, which allows flow without resistance. Transport properties through such weak links can be described with a single function, the current-phase relationship, which serves as the quantum analog of the current-voltage relationship. Here, we present a technique for inteferometrically measuring the current-phase relationship of superfluid weak links. We interferometrically measure the phase gradient around a ring-shaped superfluid Bose-Einstein condensate (BEC) containing a rotating weak link, allowing us to identify the current flowing around the ring. While our BEC weak link operates in the hydrodynamic regime, this technique can be extended to all types of weak links (including tunnel junctions) in any phase-coherent quantum gas. Moreover, it can also measure the current-phase relationships of excitations. Such measurements may open new avenues of research in quantum transport.Comment: 6 pages, 4 figures. Contact S. Eckel (below) for supplemental informatio

    Quantum Transition State Theory for proton transfer reactions in enzymes

    Full text link
    We consider the role of quantum effects in the transfer of hyrogen-like species in enzyme-catalysed reactions. This study is stimulated by claims that the observed magnitude and temperature dependence of kinetic isotope effects imply that quantum tunneling below the energy barrier associated with the transition state significantly enhances the reaction rate in many enzymes. We use a path integral approach which provides a general framework to understand tunneling in a quantum system which interacts with an environment at non-zero temperature. Here the quantum system is the active site of the enzyme and the environment is the surrounding protein and water. Tunneling well below the barrier only occurs for temperatures less than a temperature T0T_0 which is determined by the curvature of potential energy surface near the top of the barrier. We argue that for most enzymes this temperature is less than room temperature. For physically reasonable parameters quantum transition state theory gives a quantitative description of the temperature dependence and magnitude of kinetic isotope effects for two classes of enzymes which have been claimed to exhibit signatures of quantum tunneling. The only quantum effects are those associated with the transition state, both reflection at the barrier top and tunneling just below the barrier. We establish that the friction due to the environment is weak and only slightly modifies the reaction rate. Furthermore, at room temperature and for typical energy barriers environmental degrees of freedom with frequencies much less than 1000 cm−1^{-1} do not have a significant effect on quantum corrections to the reaction rate.Comment: Aspects of the article are discussed at condensedconcepts.blogspot.co

    Phase II trial of weekly 24-hour infusion of gemcitabine in patients with advanced gallbladder and biliary tract carcinoma

    Get PDF
    BACKGROUND: Patients with advanced gallbladder and biliary tract carcinoma face a dismal prognosis, as no effective palliative chemotherapy exists. The antitumor effect of gemcitabine is schedule-dependent rather than dose-dependent. We evaluated the activity of a prolonged infusion of gemcitabine in advanced gallbladder and biliary tract carcinomas. METHODS: Nineteen consecutive eligible patients were enrolled. All patients were required to have histologically confirmed diagnosis and measurable disease. Gemcitabine was infused over 24 hours at a dose of 100 mg/m(2 )on days 1, 8, and 15. Treatment was repeated every 28 days until progression of disease or limiting toxicity. Tumor response was evaluated every second course by computed tomography (CT) scans. RESULTS: Eighteen patients were evaluable for response. A total of 89 cycles of therapy were administered. One partial response was observed (6%; 95% confidence interval (CI): 0–27%) and ten additional patients had stable disease for at least two months (disease control rate 61%; 95% CI: 36–83%). The therapy was well tolerated, with moderate myelosuppression as the main toxicity. The median time to tumor progression and median overall survival was 3.6 months (95% CI 2.6–4.6 months) and 7.5 months (95% CI 6.5–8.5 months), respectively. CONCLUSION: Weekly 24-hour gemcitabine at a dose of 100 mg/m(2 )is well tolerated. There was a relatively high rate of disease control for a median duration of 5.3 months (range 2.8–18.8 months). However, the objective response rate of this regimen in gallbladder and biliary tract carcinomas was limited

    The Physical Basis for Long-lived Electronic Coherence in Photosynthetic Light Harvesting Systems

    Full text link
    The physical basis for observed long-lived electronic coherence in photosynthetic light-harvesting systems is identified using an analytically soluble model. Three physical features are found to be responsible for their long coherence lifetimes: i) the small energy gap between excitonic states, ii) the small ratio of the energy gap to the coupling between excitonic states, and iii) the fact that the molecular characteristics place the system in an effective low temperature regime, even at ambient conditions. Using this approach, we obtain decoherence times for a dimer model with FMO parameters of ≈\approx 160 fs at 77 K and ≈\approx 80 fs at 277 K. As such, significant oscillations are found to persist for 600 fs and 300 fs, respectively, in accord with the experiment and with previous computations. Similar good agreement is found for PC645 at room temperature, with oscillations persisting for 400 fs. The analytic expressions obtained provide direct insight into the parameter dependence of the decoherence time scales.Comment: 5 figures; J. Phys. Chem. Lett. (2011
    • …
    corecore