1,527 research outputs found
Comparative study of theoretical methods for nonequilibrium quantum transport
We present a detailed comparison of three different methods designed to
tackle nonequilibrium quantum transport, namely the functional renormalization
group (fRG), the time-dependent density matrix renormalization group (tDMRG),
and the iterative summation of real-time path integrals (ISPI). For the
nonequilibrium single-impurity Anderson model (including a Zeeman term at the
impurity site), we demonstrate that the three methods are in quantitative
agreement over a wide range of parameters at the particle-hole symmetric point
as well as in the mixed-valence regime. We further compare these techniques
with two quantum Monte Carlo approaches and the time-dependent numerical
renormalization group method.Comment: 19 pages, 7 figures; published versio
Resistive flow in a weakly interacting Bose-Einstein condensate
We report the direct observation of resistive flow through a weak link in a
weakly interacting atomic Bose-Einstein condensate. Two weak links separate our
ring-shaped superfluid atomtronic circuit into two distinct regions, a source
and a drain. Motion of these weak links allows for creation of controlled flow
between the source and the drain. At a critical value of the weak link
velocity, we observe a transition from superfluid flow to superfluid plus
resistive flow. Working in the hydrodynamic limit, we observe a conductivity
that is 4 orders of magnitude larger than previously reported conductivities
for a Bose-Einstein condensate with a tunnel junction. Good agreement with
zero-temperature Gross-Pitaevskii simulations and a phenomenological model
based on phase slips indicate that the creation of excitations plays an
important role in the resulting conductivity. Our measurements of resistive
flow elucidate the microscopic origin of the dissipation and pave the way for
more complex atomtronic devices.Comment: Version published in PR
p75 neurotrophin receptor is a clock gene that regulates oscillatory components of circadian and metabolic networks.
The p75 neurotrophin receptor (p75(NTR)) is a member of the tumor necrosis factor receptor superfamily with a widespread pattern of expression in tissues such as the brain, liver, lung, and muscle. The mechanisms that regulate p75(NTR) transcription in the nervous system and its expression in other tissues remain largely unknown. Here we show that p75(NTR) is an oscillating gene regulated by the helix-loop-helix transcription factors CLOCK and BMAL1. The p75(NTR) promoter contains evolutionarily conserved noncanonical E-box enhancers. Deletion mutagenesis of the p75(NTR)-luciferase reporter identified the -1039 conserved E-box necessary for the regulation of p75(NTR) by CLOCK and BMAL1. Accordingly, gel-shift assays confirmed the binding of CLOCK and BMAL1 to the p75(NTR-)1039 E-box. Studies in mice revealed that p75(NTR) transcription oscillates during dark and light cycles not only in the suprachiasmatic nucleus (SCN), but also in peripheral tissues including the liver. Oscillation of p75(NTR) is disrupted in Clock-deficient and mutant mice, is E-box dependent, and is in phase with clock genes, such as Per1 and Per2. Intriguingly, p75(NTR) is required for circadian clock oscillation, since loss of p75(NTR) alters the circadian oscillation of clock genes in the SCN, liver, and fibroblasts. Consistent with this, Per2::Luc/p75(NTR-/-) liver explants showed reduced circadian oscillation amplitude compared with those of Per2::Luc/p75(NTR+/+). Moreover, deletion of p75(NTR) also alters the circadian oscillation of glucose and lipid homeostasis genes. Overall, our findings reveal that the transcriptional activation of p75(NTR) is under circadian regulation in the nervous system and peripheral tissues, and plays an important role in the maintenance of clock and metabolic gene oscillation
Exact dynamics of interacting qubits in a thermal environment: Results beyond the weak coupling limit
We demonstrate an exact mapping of a class of models of two interacting
qubits in thermal reservoirs to two separate spin-bath problems. Based on this
mapping, exact numerical simulations of the qubits dynamics can be performed,
beyond the weak system-bath coupling limit. Given the time evolution of the
system, we study, in a numerically exact way, the dynamics of entanglement
between pair of qubits immersed in boson thermal baths, showing a rich
phenomenology, including an intermediate oscillatory behavior, the entanglement
sudden birth, sudden death, and revival. We find that stationary entanglement
develops between the qubits due to their coupling to a thermal environment,
unlike the isolated qubits case in which the entanglement oscillates. We also
show that the occurrence of entanglement sudden death in this model depends on
the portion of the zero and double excitation states in the subsystem initial
state. In the long-time limit, analytic expressions are presented at weak
system-bath coupling, for a range of relevant qubit parameters
Exact results for nonlinear ac-transport through a resonant level model
We obtain exact results for the transport through a resonant level model
(noninteracting Anderson impurity model) for rectangular voltage bias as a
function of time. We study both the transient behavior after switching on the
tunneling at time t = 0 and the ensuing steady state behavior. Explicit
expressions are obtained for the ac-current in the linear response regime and
beyond for large voltage bias. Among other effects, we observe current ringing
and PAT (photon assisted tunneling) oscillations.Comment: 7 page
Interferometric measurement of the current-phase relationship of a superfluid weak link
Weak connections between superconductors or superfluids can differ from
classical links due to quantum coherence, which allows flow without resistance.
Transport properties through such weak links can be described with a single
function, the current-phase relationship, which serves as the quantum analog of
the current-voltage relationship. Here, we present a technique for
inteferometrically measuring the current-phase relationship of superfluid weak
links. We interferometrically measure the phase gradient around a ring-shaped
superfluid Bose-Einstein condensate (BEC) containing a rotating weak link,
allowing us to identify the current flowing around the ring. While our BEC weak
link operates in the hydrodynamic regime, this technique can be extended to all
types of weak links (including tunnel junctions) in any phase-coherent quantum
gas. Moreover, it can also measure the current-phase relationships of
excitations. Such measurements may open new avenues of research in quantum
transport.Comment: 6 pages, 4 figures. Contact S. Eckel (below) for supplemental
informatio
Quantum Transition State Theory for proton transfer reactions in enzymes
We consider the role of quantum effects in the transfer of hyrogen-like
species in enzyme-catalysed reactions. This study is stimulated by claims that
the observed magnitude and temperature dependence of kinetic isotope effects
imply that quantum tunneling below the energy barrier associated with the
transition state significantly enhances the reaction rate in many enzymes. We
use a path integral approach which provides a general framework to understand
tunneling in a quantum system which interacts with an environment at non-zero
temperature. Here the quantum system is the active site of the enzyme and the
environment is the surrounding protein and water. Tunneling well below the
barrier only occurs for temperatures less than a temperature which is
determined by the curvature of potential energy surface near the top of the
barrier. We argue that for most enzymes this temperature is less than room
temperature. For physically reasonable parameters quantum transition state
theory gives a quantitative description of the temperature dependence and
magnitude of kinetic isotope effects for two classes of enzymes which have been
claimed to exhibit signatures of quantum tunneling. The only quantum effects
are those associated with the transition state, both reflection at the barrier
top and tunneling just below the barrier. We establish that the friction due to
the environment is weak and only slightly modifies the reaction rate.
Furthermore, at room temperature and for typical energy barriers environmental
degrees of freedom with frequencies much less than 1000 cm do not have a
significant effect on quantum corrections to the reaction rate.Comment: Aspects of the article are discussed at
condensedconcepts.blogspot.co
Phase II trial of weekly 24-hour infusion of gemcitabine in patients with advanced gallbladder and biliary tract carcinoma
BACKGROUND: Patients with advanced gallbladder and biliary tract carcinoma face a dismal prognosis, as no effective palliative chemotherapy exists. The antitumor effect of gemcitabine is schedule-dependent rather than dose-dependent. We evaluated the activity of a prolonged infusion of gemcitabine in advanced gallbladder and biliary tract carcinomas. METHODS: Nineteen consecutive eligible patients were enrolled. All patients were required to have histologically confirmed diagnosis and measurable disease. Gemcitabine was infused over 24 hours at a dose of 100 mg/m(2 )on days 1, 8, and 15. Treatment was repeated every 28 days until progression of disease or limiting toxicity. Tumor response was evaluated every second course by computed tomography (CT) scans. RESULTS: Eighteen patients were evaluable for response. A total of 89 cycles of therapy were administered. One partial response was observed (6%; 95% confidence interval (CI): 0–27%) and ten additional patients had stable disease for at least two months (disease control rate 61%; 95% CI: 36–83%). The therapy was well tolerated, with moderate myelosuppression as the main toxicity. The median time to tumor progression and median overall survival was 3.6 months (95% CI 2.6–4.6 months) and 7.5 months (95% CI 6.5–8.5 months), respectively. CONCLUSION: Weekly 24-hour gemcitabine at a dose of 100 mg/m(2 )is well tolerated. There was a relatively high rate of disease control for a median duration of 5.3 months (range 2.8–18.8 months). However, the objective response rate of this regimen in gallbladder and biliary tract carcinomas was limited
The Physical Basis for Long-lived Electronic Coherence in Photosynthetic Light Harvesting Systems
The physical basis for observed long-lived electronic coherence in
photosynthetic light-harvesting systems is identified using an analytically
soluble model. Three physical features are found to be responsible for their
long coherence lifetimes: i) the small energy gap between excitonic states, ii)
the small ratio of the energy gap to the coupling between excitonic states, and
iii) the fact that the molecular characteristics place the system in an
effective low temperature regime, even at ambient conditions. Using this
approach, we obtain decoherence times for a dimer model with FMO parameters of
160 fs at 77 K and 80 fs at 277 K. As such, significant
oscillations are found to persist for 600 fs and 300 fs, respectively, in
accord with the experiment and with previous computations. Similar good
agreement is found for PC645 at room temperature, with oscillations persisting
for 400 fs. The analytic expressions obtained provide direct insight into the
parameter dependence of the decoherence time scales.Comment: 5 figures; J. Phys. Chem. Lett. (2011
- …