2,690 research outputs found
A sub-basin scale dust plume source frequency inventory for southern Africa, 2005-2008
We present a dust plume source inventory for southern Africa. In order to locate and track the local, short-lived plume events, source and frequency data have been derived from Meteosat Second Generation (MSG) thermal infrared composite data (4 km data using 8.7, 10.8, and 12.0 µm) and Moderate Resolution Imaging Spectroradiometer (MODIS) visible composite data (0.25 km data utilizing 0.620 – 0.670 µm, 0.545 – 0.565 µm, and 0.459 – 0.479 µm). Between January 2005 and December 2008, a total of 328 distinct daytime dust plumes more than 10 km in length were detected. These plumes were attributed to 101 distinct point sources, consisting largely of ephemeral inland lakes, coastal pans as well as dry river valleys in Namibia, Botswana, and South Africa. These data also provided sub-basin scale source observations for large basins such as Etosha and Makgadikgadi Pans
Tunneling control and localization for Bose-Einstein condensates in a frequency modulated optical lattice
The similarity between matter waves in periodic potential and solid-state
physics processes has triggered the interest in quantum simulation using
Bose-Fermi ultracold gases in optical lattices. The present work evidences the
similarity between electrons moving under the application of oscillating
electromagnetic fields and matter waves experiencing an optical lattice
modulated by a frequency difference, equivalent to a spatially shaken periodic
potential. We demonstrate that the tunneling properties of a Bose-Einstein
condensate in shaken periodic potentials can be precisely controlled. We take
additional crucial steps towards future applications of this method by proving
that the strong shaking of the optical lattice preserves the coherence of the
matter wavefunction and that the shaking parameters can be changed
adiabatically, even in the presence of interactions. We induce reversibly the
quantum phase transition to the Mott insulator in a driven periodic potential.Comment: Laser Physics (in press
Interaction-dependent photon-assisted tunneling in optical lattices: a quantum simulator of strongly-correlated electrons and dynamical gauge fields
We introduce a scheme that combines photon-assisted tunneling by a moving optical lattice with strong Hubbard interactions, and allows for the quantum simulation of paradigmatic quantum many-body models. We show that, in a certain regime, this quantum simulator yields an effective Hubbard Hamiltonian with tunable bond-charge interactions, a model studied in the context of strongly-correlated electrons. In a different regime, we show how to exploit a correlated destruction of tunneling to explore Nagaoka ferromagnetism at finite Hubbard repulsion. By changing the photon-assisted tunneling parameters, we can also obtain a t-J model with independently controllable tunneling t, super-exchange interaction J, and even a Heisenberg-Ising anisotropy. Hence, the full phase diagram of this paradigmatic model becomes accessible to cold-atom experiments, departing from the region t _ J allowed by standard single-band Hubbard Hamiltonians in the strong-repulsion limit. We finally show that, by generalizing the photon-assisted tunneling scheme, the quantum simulator yields models of dynamical Gauge fields, where atoms of a given electronic state dress the tunneling of the atoms with a different internal state, leading to Peierls phases that mimic a dynamical magnetic field
Controllable diffusion of cold atoms in a harmonically driven and tilted optical lattice: Decoherence by spontaneous emission
We have studied some transport properties of cold atoms in an accelerated
optical lattice in the presence of decohering effects due to spontaneous
emission. One new feature added is the effect of an external AC drive. As a
result we obtain a tunable diffusion coefficient and it's nonlinear enhancement
with increasing drive amplitude. We report an interesting maximum diffusion
condition.Comment: 16 pages, 7 figures, revised versio
Testing the performance of state-of-the-art dust emission schemes using DO4Models field data
Within the framework of the Dust Observations for Models (DO4Models) project, the performance of three commonly used dust emission schemes is investigated in this paper using a box model environment. We constrain the model with field data (surface and dust particle properties as well as meteorological parameters) obtained from a dry lake bed with a crusted surface in Botswana during a 3 month period in 2011. Our box model results suggest that all schemes fail to reproduce the observed horizontal dust flux. They overestimate the magnitude of the flux by several orders of magnitude. The discrepancy is much smaller for the vertical dust emission flux, albeit still overestimated by up to an order of magnitude. The key parameter for this mismatch is the surface crusting which limits the availability of erosive material, even at higher wind speeds. The second-most important parameter is the soil size distribution. Direct dust entrainment was inferred to be important for several dust events, which explains the smaller gap between modelled and measured vertical dust fluxes. We conclude that both features, crusted surfaces and direct entrainment, need to be incorporated into dust emission schemes in order to represent the entire spectra of source processes. We also conclude that soil moisture exerts a key control on the threshold shear velocity and hence the emission threshold of dust in the model. In the field, the state of the crust is the controlling mechanism for dust emission. Although the crust is related to the soil moisture content to some extent, we are not as yet able to deduce a robust correlation between state of crust and soil moisture
Recommended from our members
A Public Health Priority: Disparities in Gynecologic Cancer Research for African-Born Women in the United States
African-born immigrants comprise one of the fastest growing populations in the U.S., nearly doubling its population size in recent years. However, it is also one of the most underrepresented groups in health-care research, especially research focused on gynecologic and breast malignancies. While the opportunity exists for access to an advanced health-care system, as immigrants migrate to the U.S., they encounter the same health-care inequalities that are faced by the native-born population based on ethnicity and social class, potentiated by limitations of health literacy and lack of familiarity with U.S. health systems. Given the continued influx of African-born immigrants in the U.S., we sought to understand the representation of this population in cervical and breast cancer research, recognizing the population’s high risk for these diseases at baseline while residing in their native countries. We determined that there is limited research in these diseases that disproportionately affect them; yet, there are identifiable and potentially modifiable factors that contribute to this paucity of evidence. This clinical commentary seeks to underscore the clear lack of research available involving African-born immigrants with respect to gynecologic and breast malignancies in the existing literature, demonstrate the need for more robust research in this population, and provide fundamental insights into barriers and solutions critical to the continued health of this growing population
Provider experiences with improvised uterine balloon tamponade for the management of uncontrolled postpartum hemorrhage in Kenya
AbstractObjectiveTo understand healthcare providers’ experiences with improvised uterine balloon tamponade (UBT) for the management of uncontrolled postpartum hemorrhage (PPH).MethodsIn a qualitative descriptive study, in-depth semi-structured interviews were conducted between November 2014 and June 2015 among Kenyan healthcare providers who had previous experience with improvising a UBT device. Interviews were conducted, audio-recorded, and transcribed.ResultsOverall, 29 healthcare providers (14 nurse-midwifes, 7 medical officers, 7 obstetricians, and 1 clinical officer) were interviewed. Providers perceived improvised UBT as valuable for managing uncontrolled PPH. Reported benefits included effectiveness in arresting hemorrhage and averting hysterectomy, and ease of use by providers of all levels of training. Providers used various materials to construct an improvised UBT. Challenges to improvising UBT—e.g. searching for materials during an emergency, procuring male condoms, and inserting fluid via a small syringe—were reported to lead to delays in care. Providers described their introduction to improvised UBT through both formal and informal sources. There was universal enthusiasm for widespread standardized training.ConclusionImprovised UBT seems to be a valuable second-line treatment for uncontrolled PPH that can be used by providers of all levels. UBT might be optimized by integrating a standard package across the health system
Universality in quantum parametric correlations
We investigate the universality of correlation functions of chaotic and
disordered quantum systems as an external parameter is varied. A new, general
scaling procedure is introduced which makes the theory invariant under
reparametrizations. Under certain general conditions we show that this
procedure is unique. The approach is illustrated with the particular case of
the distribution of eigenvalue curvatures. We also derive a semiclassical
formula for the non-universal scaling factor, and give an explicit expression
valid for arbitrary deformations of a billiard system.Comment: LaTeX, 10 pages, 2 figures. Revised version, to appear in PR
Complete devil's staircase and crystal--superfluid transitions in a dipolar XXZ spin chain: A trapped ion quantum simulation
Systems with long-range interactions show a variety of intriguing properties:
they typically accommodate many meta-stable states, they can give rise to
spontaneous formation of supersolids, and they can lead to counterintuitive
thermodynamic behavior. However, the increased complexity that comes with
long-range interactions strongly hinders theoretical studies. This makes a
quantum simulator for long-range models highly desirable. Here, we show that a
chain of trapped ions can be used to quantum simulate a one-dimensional model
of hard-core bosons with dipolar off-site interaction and tunneling, equivalent
to a dipolar XXZ spin-1/2 chain. We explore the rich phase diagram of this
model in detail, employing perturbative mean-field theory, exact
diagonalization, and quasiexact numerical techniques (density-matrix
renormalization group and infinite time evolving block decimation). We find
that the complete devil's staircase -- an infinite sequence of crystal states
existing at vanishing tunneling -- spreads to a succession of lobes similar to
the Mott-lobes found in Bose--Hubbard models. Investigating the melting of
these crystal states at increased tunneling, we do not find (contrary to
similar two-dimensional models) clear indications of supersolid behavior in the
region around the melting transition. However, we find that inside the
insulating lobes there are quasi-long range (algebraic) correlations, opposed
to models with nearest-neighbor tunneling which show exponential decay of
correlations
Application of Pulsed Field Gel Electrophoresis to Determine Îł-ray-induced Double-strand Breaks in Yeast Chromosomal Molecules
The frequency of DNA double-strand breaks (dsb) was determined in yeast cells exposed to Îł-rays under anoxic conditions. Genomic DNA of treated cells was separated by pulsed field gel electrophoresis, and two different approaches for the evaluation of the gels were employed: (1) The DNA mass distribution profile obtained by electrophoresis was compared to computed profiles, and the number of DSB per unit length was then derived in terms of a fitting procedure; (2) hybridization of selected chromosomes was performed, and a comparison of the hybridization signals in treated and untreated samples was then used to derive the frequency of dsb
- …