89 research outputs found
A sub-basin scale dust plume source frequency inventory for southern Africa, 2005-2008
We present a dust plume source inventory for southern Africa. In order to locate and track the local, short-lived plume events, source and frequency data have been derived from Meteosat Second Generation (MSG) thermal infrared composite data (4 km data using 8.7, 10.8, and 12.0 µm) and Moderate Resolution Imaging Spectroradiometer (MODIS) visible composite data (0.25 km data utilizing 0.620 – 0.670 µm, 0.545 – 0.565 µm, and 0.459 – 0.479 µm). Between January 2005 and December 2008, a total of 328 distinct daytime dust plumes more than 10 km in length were detected. These plumes were attributed to 101 distinct point sources, consisting largely of ephemeral inland lakes, coastal pans as well as dry river valleys in Namibia, Botswana, and South Africa. These data also provided sub-basin scale source observations for large basins such as Etosha and Makgadikgadi Pans
The dynamism of salt crust patterns on playas
Playas are common in arid environments and can be major sources of mineral dust that can influence global climate. These landforms typically form crusts that limit evaporation and dust emission, modify surface erosivity and erodibility, and can lead to over prediction or under prediction of (1) dust-emission potential and (2) water and heat fluxes in energy balance modeling. Through terrestrial laser scanning measurements of part of the Makgadikgadi Pans of Botswana (a Southern Hemisphere playa that emits significant amounts of dust), we show that over weeks, months, and a year, the shapes of these surfaces change considerably (ridge thrusting of >30 mm/week) and can switch among continuous, ridged, and degraded patterns. Ridged pattern development changes the measured aerodynamic roughness of the surface (as much as 3 mm/week). The dynamic nature of these crusted surfaces must be accounted for in dust entrainment and moisture balance formulae to improve regional and global climate models
Influence of Crop and Land Management on Wind Erosion from Sandy Soils in Dryland Agriculture
Minimizing wind erosion on agricultural fields is of great interest to farmers. There is a general understanding that vegetation can greatly minimize the wind erosion taking place. However, after harvest, a low vegetation cover can be inevitable, whereby the amount of stubble that remains on a field is dependent on the crop type and land management. This study aims at quantifying the vulnerability to wind erosion of different crops, and the possibility to predict the vulnerability based on high precision aerial images. The study area was the semi-arid Free State, which holds large intensive agriculture on sandy soils. These croplands have been identified as the largest emitter of dust in South Africa. The main crop in the region is maize, but also sunflower, peanut and fallow fields are common land-use types. On these fields, the horizontal sediment flux, the saltation threshold, and aerodynamic roughness length were measured, and the soil cover was assessed using Unmanned Aerial Vehicle (UAV) imagery. The results showed a strong relationship between the soil cover and the sediment flux, whereby fallow and groundnut fields have the highest wind erosion risk. These results emphasize the great importance of soil cover management to prevent wind erosion
Physical Crust Formation on Sandy Soils and Their Potential to Reduce Dust Emissions from Croplands
The sandy croplands in the Free State have been identified as one of the main dust sources
in South Africa. The aim of this study was to investigate the occurrence and strength of physical
soil crusts on cropland soils in the Free State, to identify the rainfall required to form a stable
crust, and to test their impact on dust emissions. Crust strength was measured using a fall cone
penetrometer and a torvane, while laboratory rainfall simulations were used to form experimental
crusts. Dust emissions were measured with a Portable In-Situ Wind Erosion Laboratory (PI-SWERL).
The laboratory rainfall simulations showed that stable crusts could be formed by 15 mm of rainfall.
The PI-SWERL experiments illustrated that the PM10 emission flux of such crusts is between 0.14%
and 0.26% of that of a non-crusted Luvisol and Arenosol, respectively. The presence of abraders on
the crust can increase the emissions up to 4% and 8% of the non-crusted dust flux. Overall, our study
shows that crusts in the field are potentially strong enough to protect the soil surfaces against wind
erosion during a phase of the cropping cycle when the soil surface is not protected by plants
A new framework for evaluating dust emission model development using dichotomous satellite observations of dust emission
Dust models are essential for understanding the impact of mineral dust on Earth's systems, human health, and global economies, but dust emission modelling has large uncertainties. Satellite observations of dust emission point sources (DPS) provide a valuable dichotomous inventory of regional dust emissions. We develop a framework for evaluating dust emission model performance using existing DPS data before routine calibration of dust models. To illustrate this framework's utility and arising insights, we evaluated the albedo-based dust emission model (AEM) with its areal (MODIS 500 m) estimates of soil surface wind friction velocity (u(s*)) and common, poorly constrained grain-scale entrainment threshold (u(*ts)) adjusted by a function of soil moisture (H). The AEM simulations are reduced to its frequency of occurrence, P(u(s*) > u(*ts)H). The spatio-temporal variability in observed dust emission frequency is described by the collation of nine existing DPS datasets. Observed dust emission occurs rarely, even in North Africa and the Middle East, where DPS frequency averages 1.8 %, (similar to 7 days y(-1)), indicating extreme, large wind speed events. The AEM coincided with observed dust emission similar to 71.4 %, but simulated dust emission similar to 27.4 % when no dust emission was observed, while dust emission occurrence was over-estimated by up to 2 orders of magnitude. For estimates to match observations, results showed that grain- scale u(*ts) needed restricted sediment supply and compatibility with areal u(s*). Failure to predict dust emission during observed events, was due to u(s*) being too small because reanalysis winds (ERA5-Land) were averaged across 11 km pixels, and inconsistent with u(s*)across 0.5 km pixels representing local maxima. Assumed infinite sediment supply caused the AEM to simulate dust emission whenever P(u(s*)>u(*ts)H), producing false positives when wind speeds were large. The dust emission model scales of existing parameterisations need harmonising and a new parameterisation for u(*ts) is required to restrict sediment supply over space and time
Beryllium-10, thorium-231 and protactinium-231 in galapagos Microplate Sedimentes: implications of hydrothermal activity and paleoproductivity changes during the last 100.000 years
Biogenic particle fluxes from highly productive surface waters, boundary scavenging, and hydrothermal activity are the main factors influencing the deposition of radionuclides in the area of the Galapagos microplate, eastern Equatorial Pacific. In order to evaluate the importance of these three processes throughout the last 100 kyr, concentrations of the radionuclides 10Be, 230Th, and 231Pa, and of Mn and Fe were measured at high resolution in sediment samples from two gravity cores KLH 068 and KLH 093. High biological productivity in the surface waters overlying the investigated area has led to 10Be and 231Pa fluxes exceeding production during at least the last 30 kyr and probably the last 100 kyr. However, during periods of high productivity at the up welling centers off Peru and extension of the equatorial high-productivity zone, a relative loss of 10Be and 231Pa may have occurred in these sediment cores because of boundary scavenging. The effects of hydrothermal activity were investigated by comparing the 230Thex concentrations to the Mn/Fe ratios and by comparing the fluxes of 230Th and 10Be which exceed production. The results suggest an enhanced hydrothermal influence during isotope stages 4 and 5 and to a lesser extent during isotope stage 1 in core KLH 093. During isotope stages 2 and 3, the hydrothermal supply of Mn was deposited elsewhere, probably because of changes in current regime or deep water oxygenation. A strong increase of the Mn/Fe ratio at the beginning of climatic stage 1 which is not accompanied by an increase of the 230Thex concentration is interpreted to be an effect of Mn remobilization and reprecipitation in the sediment
Gone with the wind : microbial communities associated with dust from emissive farmlands
Dust is a major vehicle for the dispersal of microorganisms across the globe. While much attention has been focused on microbial dispersal in dust plumes from major natural dust sources, very little is known about the fractionation processes that select for the “dust microbiome.” The recent identification of highly emissive, agricultural land dust sources in South Africa has provided the opportunity to study the displacement of microbial communities through dust generation and transport. In this study, we aimed to document the microbial communities that are carried in the dust from one of South Africa’s most emissive locations, and to investigate the selective factors that control the partitioning of microbial communities from soil to dust. For this purpose, dust samples were generated at different emission sources using a Portable In-Situ Wind Erosion Lab (PI-SWERL), and the taxonomic composition of the resulting microbiomes was compared with the source soils. Dust emission processes resulted in the clear fractionation of the soil bacterial community, where dust samples were significantly enriched in spore-forming taxa. Conversely, little fractionation was observed in the soil fungal communities, such that the dust fungal fingerprint could be used to identify the source soil. Dust microbiomes were also found to vary according to the emission source, suggesting that land use significantly affected the structure and fractionation of microbial communities transported in dust plumes. In addition, several potential biological allergens of fungal origin were detected in the dust microbiomes, highlighting the potential detrimental effects of dust plumes emitted in South Africa. This study represents the first description of the fractionation of microbial taxa occurring at the source of dust plumes and provides a direct link between land use and its impact on the dust microbiome.The South African National Research Foundation under the Swiss-South Africa Joint Research Program.http://link.springer.com/journal/2482022-02-07hj2021BiochemistryGeneticsMicrobiology and Plant Patholog
Global patterns and environmental controls of perchlorate and nitrate co-occurrence in arid and semi-arid environments
Natural perchlorate (ClO4-) is of increasing interest due to its wide-spread occurrence on Earth and Mars, yet little information exists on the relative abundance of ClO4- compared to other major anions, its stability, or long-term variations in production that may impact the observed distributions. Our objectives were to evaluate the occurrence and fate of ClO4- in groundwater and soils/caliche in arid and semi-arid environments (southwestern United States, southern Africa, United Arab Emirates, China, Antarctica, and Chile) and the relationship of ClO4- to the more well-studied atmospherically deposited anions NO3- and Cl- as a means to understand the prevalent processes that affect the accumulation of these species over various time scales. ClO4- is globally distributed in soil and groundwater in arid and semi-arid regions on Earth at concentrations ranging from 10-1 to 106 µg/kg. Generally, the ClO4- concentration in these regions increases with aridity index, but also depends on the duration of arid conditions. In many arid and semi-arid areas, NO3- and ClO4- co-occur at molar ratios (NO3-/ClO4-) that vary between ~104 and 105. We hypothesize that atmospheric deposition ratios are largely preserved in hyper-arid areas that support little or no biological activity (e.g. plants or bacteria), but can be altered in areas with more active biological processes including N2 fixation, N mineralization, nitrification, denitrification, and microbial ClO4- reduction, as indicated in part by NO3- isotope data. In contrast, much larger ranges of Cl-/ClO4- and Cl-/NO3- ratios indicate Cl- varies independently from both ClO4- and NO3-. The general lack of correlation between Cl- and ClO4- or NO3- implies that Cl- is not a good indicator of co-deposition and should be used with care when interpreting oxyanion cycling in arid systems. The Atacama Desert appears to be unique compared to all other terrestrial locations having a NO3-/ClO4- molar ratio ~103. The relative enrichment in ClO4- compared to Cl- or NO3- and unique isotopic composition of Atacama ClO4- may reflect either additional in-situ production mechanism(s) or higher relative atmospheric production rates in that specific region or in the geological past. Elevated concentrations of ClO4- reported on the surface of Mars, and its enrichment with respect to Cl- and NO3-, could reveal important clues regarding the climatic, hydrologic, and potentially biologic evolution of that planet. Given the highly conserved ratio of NO3-/ClO4- in non-biologically active areas on Earth, it may be possible to use alterations of this ratio as a biomarker on Mars and for interpreting major anion cycles and processes on both Mars and Earth, particularly with respect to the less-conserved NO3- pool terrestrially
Global patterns and environmental controls of perchlorate and nitrate co-occurrence in arid and semi-arid environments
Natural perchlorate (ClO4-) is of increasing interest due to its wide-spread occurrence on Earth and Mars, yet little information exists on the relative abundance of ClO4- compared to other major anions, its stability, or long-term variations in production that may impact the observed distributions. Our objectives were to evaluate the occurrence and fate of ClO4- in groundwater and soils/caliche in arid and semi-arid environments (southwestern United States, southern Africa, United Arab Emirates, China, Antarctica, and Chile) and the relationship of ClO4- to the more well-studied atmospherically deposited anions NO3- and Cl- as a means to understand the prevalent processes that affect the accumulation of these species over various time scales. ClO4- is globally distributed in soil and groundwater in arid and semi-arid regions on Earth at concentrations ranging from 10-1 to 106 µg/kg. Generally, the ClO4- concentration in these regions increases with aridity index, but also depends on the duration of arid conditions. In many arid and semi-arid areas, NO3- and ClO4- co-occur at molar ratios (NO3-/ClO4-) that vary between ~104 and 105. We hypothesize that atmospheric deposition ratios are largely preserved in hyper-arid areas that support little or no biological activity (e.g. plants or bacteria), but can be altered in areas with more active biological processes including N2 fixation, N mineralization, nitrification, denitrification, and microbial ClO4- reduction, as indicated in part by NO3- isotope data. In contrast, much larger ranges of Cl-/ClO4- and Cl-/NO3- ratios indicate Cl- varies independently from both ClO4- and NO3-. The general lack of correlation between Cl- and ClO4- or NO3- implies that Cl- is not a good indicator of co-deposition and should be used with care when interpreting oxyanion cycling in arid systems. The Atacama Desert appears to be unique compared to all other terrestrial locations having a NO3-/ClO4- molar ratio ~103. The relative enrichment in ClO4- compared to Cl- or NO3- and unique isotopic composition of Atacama ClO4- may reflect either additional in-situ production mechanism(s) or higher relative atmospheric production rates in that specific region or in the geological past. Elevated concentrations of ClO4- reported on the surface of Mars, and its enrichment with respect to Cl- and NO3-, could reveal important clues regarding the climatic, hydrologic, and potentially biologic evolution of that planet. Given the highly conserved ratio of NO3-/ClO4- in non-biologically active areas on Earth, it may be possible to use alterations of this ratio as a biomarker on Mars and for interpreting major anion cycles and processes on both Mars and Earth, particularly with respect to the less-conserved NO3- pool terrestrially
- …