559 research outputs found

    Multimodal collaborative workgroup dataset and challenges

    Full text link
    © 2017, CEUR-WS. All rights reserved. This work presents a multimodal dataset of 17 workgroup sessions in a collaborative learning activity. Workgroups were conformed of two or three students using a tabletop application in a co-located space. The dataset includes time-synchronized audio, video and tabletop system's logs. Some challenges were identified during the collection of the data, such as audio participation identification, and user traces identification. Future work should explore how to overcome the aforementioned difficulties

    Simple Quantum Systems in Spacetimes with Closed Timelike Curves

    Get PDF
    Three simple examples illustrate properties of path integral amplitudes in fixed background spacetimes with closed timelike curves: non-relativistic potential scattering in the Born approximation is non-unitary, but both an example with hard spheres and the exact solution of a totally discrete model are unitary.Comment: 15 pages, CALT-68-180

    The time travel paradox

    Get PDF
    We define the time travel paradox in physical terms and prove its existence by constructing an explicit example. We argue further that in theories -- such as general relativity -- where the spacetime geometry is subject to nothing but differential equations and initial data no paradoxes arise.Comment: Minor changes + an explanatory note concerning the lions with the same world line

    Reliability of Self-reported Neighborhood Characteristics

    Full text link
    The majority of studies examining the relation between neighborhood environments and health have used census-based indicators to characterize neighborhoods. These studies have shown that neighborhood socieconomic characteristics are associated with a range of health outcomes. Establishing if these associations reflect causal relations requires testing hypotheses regarding how specific features of neighborhoods are related to specific health outcomes. However, there is little information on the reliability of neighborhood measures. The purpose of this study was to estimate the reliability of a questionnaire measuring various self-reported measures of the neighborhood environment of possible relevance to cardiovascular disease. The study consisted of a faceto-face and telephone interview administered twice to 48 participants over a 2-week period. The face-to-face and telephone portions of the interview lasted an average of 5 and 11 minutes, respectively. The questionnaire was piloted among a largely Latino and African American study sample recruited from a public hospital setting in New York City. Scales were used to assess six neighborhood domains: aesthetic quality, walking/ exercise environment, safety from crime, violence, access to healthy foods, and social cohesion. Cronbach’s α’s ranged from. 77 to. 94 for the scales corresponding to these domains, with test-retest correlations ranging from 0.78 to 0.91. In addition neighborhood indices for presence of recreational facilities, quality of recreational facilities, neighborhood participation, and neighborhood problems were examined. Test-retest reliability measures for these indices ranged from 0.73 to 0.91. The results from this study suggested that self-reported neighborhood characteristics can be reliably measuredhttp://deepblue.lib.umich.edu/bitstream/2027.42/57744/1/Reliability of Self reported neighborhood characteristics.pd

    Detection, Measurement and Gravitational Radiation

    Get PDF
    Here I examine how to determine the sensitivity of the LIGO, VIRGO, and LAGOS gravitational wave detectors to sources of gravitational radiation by considering the process by which data are analyzed in a noisy detector. By constructing the probability that the detector output is consistent with the presence of a signal, I show how to (1) quantify the uncertainty that the output contains a signal and is not simply noise, and (2) construct the probability distribution that the signal parameterization has a certain value. From the distribution and its mode I determine volumes V(P)V(P) in parameter space such that actual signal parameters are in V(P)V(P) with probability PP. If we are {\em designing} a detector, or determining the suitability of an existing detector for observing a new source, then we don't have detector output to analyze but are interested in the ``most likely'' response of the detector to a signal. I exploit the techniques just described to determine the ``most likely'' volumes V(P)V(P) for detector output corresponding to the source. Finally, as an example, I apply these techniques to anticipate the sensitivity of the LIGO and LAGOS detectors to the gravitational radiation from a perturbed Kerr black hole.Comment: 37 pages (plus 6 figures), LaTeX/REVTE

    Ringholes and closed timelike curves

    Get PDF
    It is shown that in a classical spacetime with multiply connected space slices having the topology of a torus, closed timelike curves are also formed. We call these spacetime ringholes. Two regions on the torus surface can be distinguished which are separated by angular horizons. On one of such regions (that which surrounds the maximum circumference of the torus) everything happens like in spherical wormholes, but the other region (the rest of the torus surface), while still possessing a chronology horizon and non-chronal region, behaves like a coverging, rather than diverging, lens and corresponds to an energy density which is always positive for large speeds at or near the throat. It is speculated that a ringhole could be converted into a time machine to perform time travels by an observer who would never encounter any matter that violates the classical averaged weak energy condition. Based on a calculation of vacuum fluctuations, it is also seen that the angular horizons can prevent the emergence of quantum instabilities near the throat.Comment: 11 pages, RevTex, 4 figures available upon reques

    Critical Collapse of Cylindrically Symmetric Scalar Field in Four-Dimensional Einstein's Theory of Gravity

    Full text link
    Four-dimensional cylindrically symmetric spacetimes with homothetic self-similarity are studied in the context of Einstein's Theory of Gravity, and a class of exact solutions to the Einstein-massless scalar field equations is found. Their local and global properties are investigated and found that they represent gravitational collapse of a massless scalar field. In some cases the collapse forms black holes with cylindrical symmetry, while in the other cases it does not. The linear perturbations of these solutions are also studied and given in closed form. From the spectra of the unstable eigen-modes, it is found that there exists one solution that has precisely one unstable mode, which may represent a critical solution, sitting on a boundary that separates two different basins of attraction in the phase space.Comment: Some typos are corrected. The final version to appear in Phys. Rev.

    The Quantum Propagator for a Nonrelativistic Particle in the Vicinity of a Time Machine

    Get PDF
    We study the propagator of a non-relativistic, non-interacting particle in any non-relativistic ``time-machine'' spacetime of the type shown in Fig.~1: an external, flat spacetime in which two spatial regions, VV_- at time tt_- and V+V_+ at time t+t_+, are connected by two temporal wormholes, one leading from the past side of VV_- to t the future side of V+V_+ and the other from the past side of V+V_+ to the future side of VV_-. We express the propagator explicitly in terms of those for ordinary, flat spacetime and for the two wormholes; and from that expression we show that the propagator satisfies completeness and unitarity in the initial and final ``chronal regions'' (regions without closed timelike curves) and its propagation from the initial region to the final region is unitary. However, within the time machine it satisfies neither completeness nor unitarity. We also give an alternative proof of initial-region-to-final-region unitarity based on a conserved current and Gauss's theorem. This proof can be carried over without change to most any non-relativistic time-machine spacetime; it is the non-relativistic version of a theorem by Friedman, Papastamatiou and Simon, which says that for a free scalar field, quantum mechanical unitarity follows from the fact that the classical evolution preserves the Klein-Gordon inner product

    From wormhole to time machine: Comments on Hawking's Chronology Protection Conjecture

    Get PDF
    The recent interest in ``time machines'' has been largely fueled by the apparent ease with which such systems may be formed in general relativity, given relatively benign initial conditions such as the existence of traversable wormholes or of infinite cosmic strings. This rather disturbing state of affairs has led Hawking to formulate his Chronology Protection Conjecture, whereby the formation of ``time machines'' is forbidden. This paper will use several simple examples to argue that the universe appears to exhibit a ``defense in depth'' strategy in this regard. For appropriate parameter regimes Casimir effects, wormhole disruption effects, and gravitational back reaction effects all contribute to the fight against time travel. Particular attention is paid to the role of the quantum gravity cutoff. For the class of model problems considered it is shown that the gravitational back reaction becomes large before the Planck scale quantum gravity cutoff is reached, thus supporting Hawking's conjecture.Comment: 43 pages,ReV_TeX,major revision

    Absence of trapped surfaces and singularities in cylindrical collapse

    Full text link
    The gravitational collapse of an infinite cylindrical thin shell of generic matter in an otherwise empty spacetime is considered. We show that geometries admitting two hypersurface orthogonal Killing vectors cannot contain trapped surfaces in the vacuum portion of spacetime causally available to geodesic timelike observers. At asymptotic future null infinity, however, congruences of outgoing radial null geodesics become marginally trapped, due to convergence induced by shear caused by the interaction of a transverse wave component with the geodesics. The matter shell itself is shown to be always free of trapped surfaces, for this class of geometries. Finally, two simplified matter models are analytically examined. For one model, the weak energy condition is shown to be a necessary condition for collapse to halt; for the second case, it is a sufficient condition for collapse to be able to halt.Comment: 26 pages, revtex4, 1 eps figure; matches version to appear in Phys. Rev. D (in press
    corecore