8 research outputs found
Gastric cancer actionable genomic alterations across diverse populations worldwide and pharmacogenomics strategies based on precision oncology
Introduction: Gastric cancer is one of the most prevalent types of cancer worldwide. The World Health Organization (WHO), the International Agency for Research on Cancer (IARC), and the Global Cancer Statistics (GLOBOCAN) reported an age standardized global incidence rate of 9.2 per 100,000 individuals for gastric cancer in 2022, with a mortality rate of 6.1. Despite considerable progress in precision oncology through the efforts of international consortia, understanding the genomic features and their influence on the effectiveness of anti-cancer treatments across diverse ethnic groups remains essential.Methods: Our study aimed to address this need by conducting integrated in silico analyses to identify actionable genomic alterations in gastric cancer driver genes, assess their impact using deleteriousness scores, and determine allele frequencies across nine global populations: European Finnish, European non-Finnish, Latino, East Asian, South Asian, African, Middle Eastern, Ashkenazi Jewish, and Amish. Furthermore, our goal was to prioritize targeted therapeutic strategies based on pharmacogenomics clinical guidelines, in silico drug prescriptions, and clinical trial data.Results: Our comprehensive analysis examined 275,634 variants within 60 gastric cancer driver genes from 730,947 exome sequences and 76,215 whole-genome sequences from unrelated individuals, identifying 13,542 annotated and predicted oncogenic variants. We prioritized the most prevalent and deleterious oncogenic variants for subsequent pharmacogenomics testing. Additionally, we discovered actionable genomic alterations in the ARID1A, ATM, BCOR, ERBB2, ERBB3, CDKN2A, KIT, PIK3CA, PTEN, NTRK3, TP53, and CDKN2A genes that could enhance the efficacy of anti-cancer therapies, as suggested by in silico drug prescription analyses, reviews of current pharmacogenomics clinical guidelines, and evaluations of phase III and IV clinical trials targeting gastric cancer driver proteins.Discussion: These findings underline the urgency of consolidating efforts to devise effective prevention measures, invest in genomic profiling for underrepresented populations, and ensure the inclusion of ethnic minorities in future clinical trials and cancer research in developed countries
Unraveling druggable cancer-driving proteins and targeted drugs using artificial intelligence and multi-omics analyses
[Abstract]: The druggable proteome refers to proteins that can bind to small molecules with appropriate chemical affinity, inducing a favorable clinical response. Predicting druggable proteins through screening and in silico modeling is imperative for drug design. To contribute to this field, we developed an accurate predictive classifier for druggable cancer-driving proteins using amino acid composition descriptors of protein sequences and 13 machine learning linear and non-linear classifiers. The optimal classifier was achieved with the support vector machine method, utilizing 200 tri-amino acid composition descriptors. The high performance of the model is evident from an area under the receiver operating characteristics (AUROC) of 0.975 ± 0.003 and an accuracy of 0.929 ± 0.006 (threefold cross-validation). The machine learning prediction model was enhanced with multi-omics approaches, including the target-disease evidence score, the shortest pathways to cancer hallmarks, structure-based ligandability assessment, unfavorable prognostic protein analysis, and the oncogenic variome. Additionally, we performed a drug repurposing analysis to identify drugs with the highest affinity capable of targeting the best predicted proteins. As a result, we identified 79 key druggable cancer-driving proteins with the highest ligandability, and 23 of them demonstrated unfavorable prognostic significance across 16 TCGA PanCancer types: CDKN2A, BCL10, ACVR1, CASP8, JAG1, TSC1, NBN, PREX2, PPP2R1A, DNM2, VAV1, ASXL1, TPR, HRAS, BUB1B, ATG7, MARK3, SETD2, CCNE1, MUTYH, CDKN2C, RB1, and SMARCA4. Moreover, we prioritized 11 clinically relevant drugs targeting these proteins. This strategy effectively predicts and prioritizes biomarkers, therapeutic targets, and drugs for in-depth studies in clinical trials. Scripts are available at https://github.com/muntisa/machine-learning-for-druggable-proteins.This work was supported by Universidad de Las Américas, Ecuador; the grant ED431C 2022/46—Competitive Reference Groups. GRC—funded by the EU and Xunta de Galicia, Spain; and the Latin American Society of Pharmacogenomics and Personalized Medicine (SOLFAGEM).Xunta de Galicia; ED431C 2022/4
Un examen actualizado de la percepción de las barreras para la implementación de la farmacogenómica y la utilidad de los pares fármaco/gen en América Latina y el Caribe
La farmacogenómica (PGx) se considera un campo emergente en los países en desarrollo. La investigación sobre PGx en la región de América Latina y el Caribe (ALC) sigue siendo escasa, con información limitada en algunas poblaciones. Por lo tanto, las extrapolaciones son complicadas, especialmente en poblaciones mixtas. En este trabajo, revisamos y analizamos el conocimiento farmacogenómico entre la comunidad científica y clínica de ALC y examinamos las barreras para la aplicación clínica. Realizamos una búsqueda de publicaciones y ensayos clínicos en este campo en todo el mundo y evaluamos la contribución de ALC. A continuación, realizamos una encuesta regional estructurada que evaluó una lista de 14 barreras potenciales para la aplicación clínica de biomarcadores en función de su importancia. Además, se analizó una lista emparejada de 54 genes/fármacos para determinar una asociación entre los biomarcadores y la respuesta a la medicina genómica. Esta encuesta se comparó con una encuesta anterior realizada en 2014 para evaluar el progreso en la región. Los resultados de la búsqueda indicaron que los países de América Latina y el Caribe han contribuido con el 3,44% del total de publicaciones y el 2,45% de los ensayos clínicos relacionados con PGx en todo el mundo hasta el momento. Un total de 106 profesionales de 17 países respondieron a la encuesta. Se identificaron seis grandes grupos de obstáculos. A pesar de los continuos esfuerzos de la región en la última década, la principal barrera para la implementación de PGx en ALC sigue siendo la misma, la "necesidad de directrices, procesos y protocolos para la aplicación clínica de la farmacogenética/farmacogenómica". Las cuestiones de coste-eficacia se consideran factores críticos en la región. Los puntos relacionados con la reticencia de los clínicos son actualmente menos relevantes. Según los resultados de la encuesta, los pares gen/fármaco mejor clasificados (96%-99%) y percibidos como importantes fueron CYP2D6/tamoxifeno, CYP3A5/tacrolimus, CYP2D6/opioides, DPYD/fluoropirimidinas, TMPT/tiopurinas, CYP2D6/antidepresivos tricíclicos, CYP2C19/antidepresivos tricíclicos, NUDT15/tiopurinas, CYP2B6/efavirenz y CYP2C19/clopidogrel. En conclusión, aunque la contribución global de los países de ALC sigue siendo baja en el campo del PGx, se ha observado una mejora relevante en la región. La percepción de la utilidad de las pruebas PGx en la comunidad biomédica ha cambiado drásticamente, aumentando la concienciación entre los médicos, lo que sugiere un futuro prometedor en las aplicaciones clínicas de PGx en ALC.Pharmacogenomics (PGx) is considered an emergent field in developing countries. Research on PGx in the Latin American and the Caribbean (LAC) region remains scarce, with limited information in some populations. Thus, extrapolations are complicated, especially in mixed populations. In this paper, we reviewed and analyzed pharmacogenomic knowledge among the LAC scientific and clinical community and examined barriers to clinical application. We performed a search for publications and clinical trials in the field worldwide and evaluated the contribution of LAC. Next, we conducted a regional structured survey that evaluated a list of 14 potential barriers to the clinical implementation of biomarkers based on their importance. In addition, a paired list of 54 genes/drugs was analyzed to determine an association between biomarkers and response to genomic medicine. This survey was compared to a previous survey performed in 2014 to assess progress in the region. The search results indicated that Latin American and Caribbean countries have contributed 3.44% of the total publications and 2.45% of the PGx-related clinical trials worldwide thus far. A total of 106 professionals from 17 countries answered the survey. Six major groups of barriers were identified. Despite the region’s continuous efforts in the last decade, the primary barrier to PGx implementation in LAC remains the same, the “need for guidelines, processes, and protocols for the clinical application of pharmacogenetics/pharmacogenomics”. Cost-effectiveness issues are considered critical factors in the region. Items related to the reluctance of clinicians are currently less relevant. Based on the survey results, the highest ranked (96%–99%) gene/drug pairs perceived as important were CYP2D6/tamoxifen, CYP3A5/tacrolimus, CYP2D6/opioids, DPYD/fluoropyrimidines, TMPT/thiopurines, CYP2D6/tricyclic antidepressants, CYP2C19/tricyclic antidepressants, NUDT15/thiopurines, CYP2B6/efavirenz, and CYP2C19/clopidogrel. In conclusion, although the global contribution of LAC countries remains low in the PGx field, a relevant improvement has been observed in the region. The perception of the usefulness of PGx tests in biomedical community has drastically changed, raising awareness among physicians, which suggests a promising future in the clinical applications of PGx in LAC
An Updated Examination of the Perception of Barriers for Pharmacogenomics Implementation and the Usefulness of Drug/Gene Pairs in Latin America and the Caribbean
Pharmacogenomics (PGx) is considered an emergent field in developing countries. Research on PGx in the Latin American and the Caribbean (LAC) region remains scarce, with limited information in some populations. Thus, extrapolations are complicated, especially in mixed populations. In this paper, we reviewed and analyzed pharmacogenomic knowledge among the LAC scientific and clinical community and examined barriers to clinical application. We performed a search for publications and clinical trials in the field worldwide and evaluated the contribution of LAC. Next, we conducted a regional structured survey that evaluated a list of 14 potential barriers to the clinical implementation of biomarkers based on their importance. In addition, a paired list of 54 genes/drugs was analyzed to determine an association between biomarkers and response to genomic medicine. This survey was compared to a previous survey performed in 2014 to assess progress in the region. The search results indicated that Latin American and Caribbean countries have contributed 3.44% of the total publications and 2.45% of the PGx-related clinical trials worldwide thus far. A total of 106 professionals from 17 countries answered the survey. Six major groups of barriers were identified. Despite the region’s continuous efforts in the last decade, the primary barrier to PGx implementation in LAC remains the same, the “need for guidelines, processes, and protocols for the clinical application of pharmacogenetics/pharmacogenomics”. Cost-effectiveness issues are considered critical factors in the region. Items related to the reluctance of clinicians are currently less relevant. Based on the survey results, the highest ranked (96%–99%) gene/drug pairs perceived as important were CYP2D6/tamoxifen, CYP3A5/tacrolimus, CYP2D6/opioids, DPYD/fluoropyrimidines, TMPT/thiopurines, CYP2D6/tricyclic antidepressants, CYP2C19/tricyclic antidepressants, NUDT15/thiopurines, CYP2B6/efavirenz, and CYP2C19/clopidogrel. In conclusion, although the global contribution of LAC countries remains low in the PGx field, a relevant improvement has been observed in the region. The perception of the usefulness of PGx tests in biomedical community has drastically changed, raising awareness among physicians, which suggests a promising future in the clinical applications of PGx in LAC
Molecular Pathogenesis and New Therapeutic Dimensions for Spinal Muscular Atrophy
The condition known as 5q spinal muscular atrophy (SMA) is a devastating autosomal recessive neuromuscular disease caused by a deficiency of the ubiquitous protein survival of motor neuron (SMN), which is encoded by the SMN1 and SMN2 genes. It is one of the most common pediatric recessive genetic diseases, and it represents the most common cause of hereditary infant mortality. After decades of intensive basic and clinical research efforts, and improvements in the standard of care, successful therapeutic milestones have been developed, delaying the progression of 5q SMA and increasing patient survival. At the same time, promising data from early-stage clinical trials have indicated that additional therapeutic options are likely to emerge in the near future. Here, we provide updated information on the molecular underpinnings of SMA; we also provide an overview of the rapidly evolving therapeutic landscape for SMA, including SMN-targeted therapies, SMN-independent therapies, and combinational therapies that are likely to be key for the development of treatments that are effective across a patient’s lifespan
Table1_Gastric cancer actionable genomic alterations across diverse populations worldwide and pharmacogenomics strategies based on precision oncology.XLSX
Introduction: Gastric cancer is one of the most prevalent types of cancer worldwide. The World Health Organization (WHO), the International Agency for Research on Cancer (IARC), and the Global Cancer Statistics (GLOBOCAN) reported an age standardized global incidence rate of 9.2 per 100,000 individuals for gastric cancer in 2022, with a mortality rate of 6.1. Despite considerable progress in precision oncology through the efforts of international consortia, understanding the genomic features and their influence on the effectiveness of anti-cancer treatments across diverse ethnic groups remains essential.Methods: Our study aimed to address this need by conducting integrated in silico analyses to identify actionable genomic alterations in gastric cancer driver genes, assess their impact using deleteriousness scores, and determine allele frequencies across nine global populations: European Finnish, European non-Finnish, Latino, East Asian, South Asian, African, Middle Eastern, Ashkenazi Jewish, and Amish. Furthermore, our goal was to prioritize targeted therapeutic strategies based on pharmacogenomics clinical guidelines, in silico drug prescriptions, and clinical trial data.Results: Our comprehensive analysis examined 275,634 variants within 60 gastric cancer driver genes from 730,947 exome sequences and 76,215 whole-genome sequences from unrelated individuals, identifying 13,542 annotated and predicted oncogenic variants. We prioritized the most prevalent and deleterious oncogenic variants for subsequent pharmacogenomics testing. Additionally, we discovered actionable genomic alterations in the ARID1A, ATM, BCOR, ERBB2, ERBB3, CDKN2A, KIT, PIK3CA, PTEN, NTRK3, TP53, and CDKN2A genes that could enhance the efficacy of anti-cancer therapies, as suggested by in silico drug prescription analyses, reviews of current pharmacogenomics clinical guidelines, and evaluations of phase III and IV clinical trials targeting gastric cancer driver proteins.Discussion: These findings underline the urgency of consolidating efforts to devise effective prevention measures, invest in genomic profiling for underrepresented populations, and ensure the inclusion of ethnic minorities in future clinical trials and cancer research in developed countries.</p
Integrated multi-omics analysis reveals the molecular interplay between circadian clocks and cancer pathogenesis
Abstract Circadian rhythms (CRs) are fundamental biological processes that significantly impact human well-being. Disruption of these rhythms can trigger insufficient neurocognitive development, insomnia, mental disorders, cardiovascular diseases, metabolic dysfunctions, and cancer. The field of chronobiology has increased our understanding of how rhythm disturbances contribute to cancer pathogenesis, and how circadian timing influences the efficacy of cancer treatments. As the circadian clock steadily gains recognition as an emerging factor in tumorigenesis, a thorough and comprehensive multi-omics analysis of CR genes/proteins has never been performed. To shed light on this, we performed, for the first time, an integrated data analysis encompassing genomic/transcriptomic alterations across 32 cancer types (n = 10,918 tumors) taken from the PanCancer Atlas, unfavorable prognostic protein analysis, protein–protein interactomics, and shortest distance score pathways to cancer hallmark phenotypes. This data mining strategy allowed us to unravel 31 essential CR-related proteins involved in the signaling crossroad between circadian rhythms and cancer. In the context of drugging the clock, we identified pharmacogenomic clinical annotations and drugs currently in late phase clinical trials that could be considered as potential cancer therapeutic strategies. These findings highlight the diverse roles of CR-related genes/proteins in the realm of cancer research and therapy
Multi‐institutional experience of genetic diagnosis in Ecuador: National registry of chromosome alterations and polymorphisms
Abstract Background Detection of chromosomal abnormalities is crucial in various medical areas; to diagnose birth defects, genetic disorders, and infertility, among other complex phenotypes, in individuals across a wide range of ages. Hence, the present study wants to contribute to the knowledge of type and frequency of chromosomal alterations and polymorphisms in Ecuador. Methods Cytogenetic registers from different Ecuadorian provinces have been merged and analyzed to construct an open‐access national registry of chromosome alterations and polymorphisms. Results Of 28,806 karyotypes analyzed, 6,008 (20.9%) exhibited alterations. Down syndrome was the most frequent autosome alteration (88.28%), followed by Turner syndrome (60.50%), a gonosome aneuploidy. A recurrent high percentage of Down syndrome mosaicism (7.45%) reported here, as well as by previous Ecuadorian preliminary registries, could be associated with geographic location and admixed ancestral composition. Translocations (2.46%) and polymorphisms (7.84%) were not as numerous as autosomopathies (64.33%) and gonosomopathies (25.37%). Complementary to conventional cytogenetics tests, molecular tools have allowed identification of submicroscopic alterations regions or candidate genes which can be possibly implicated in patients' symptoms and phenotypes. Conclusion The Ecuadorian National Registry of Chromosome Alterations and Polymorphisms provides a baseline to better understand chromosomal abnormalities in Ecuador and therefore their clinical management and awareness. This data will guide public policy makers to promote and financially support cytogenetic and genetic testing