31 research outputs found

    Evidence that drug flux across synthetic membranes is described by normally distributed permeability coefficients

    No full text
    Over recent decades, the use of in vitro diffusion cell studies to assess skin permeability has evolved into a major research tool, providing key insights into the relationships between skin, drug and formulation. Sometimes, such studies involve synthetic membranes as this approach can yield useful inferences with respect to drug-skin partitioning and diffusion phenomena. Yet despite the popularity of such studies, it is still not at all known whether typical solute transport across synthetic barriers results in a normal distribution of permeability coefficients or alternatively some type of skewed distribution. The present study aims to shed light on this issue. To this end, five compounds (testosterone, oestradiol, corticosterone, aldosterone and adenosine) exhibiting a broad range of octanol-water partition coefficient values were selected as test penetrants. The protocol involved taking multiple replicate measurements of each drug's passive steady state flux through poly(dimethylsiloxane) membrane. Each penetrant's resultant permeability coefficient database was subjected to a Kolmogorov-Smirnov (KS) test for normality. It was found that the permeability coefficients of all five drugs were distributed in a Gaussian-normal fashion. The theoretical significance and practical impact of these findings are discussed

    Structure and rheology of semisolid O/W creams containing cetyl alcohol/Non-Ionic surfactant mixed emulsifier and different polymers

    No full text
    Oil-in-water (o/w) emulsions for cosmetic use, such as lotions and creams, are complex multiple-phase systems, which may contain a number of interacting surfactants, fatty amphiphiles, polymers and other excipients. This study investigates the influence of two synthetic cationic polymers, Polyquaternium-7 and Polyquaternium-11, and the natural anionic polymer, gum of acacia, on the rheology and microstructure of creams prepared with a non-ionic mixed emulsifier (cetyl stearyl alcohol-12EO/cetyl alcohol) using rheology (continuous shear, and viscoelastic creep and oscillation), microscopy and differential scanning calorimetry (DSC). A control cream containing no polymer was also investigated. The semisolid control cream was structured by a swollen lamellar gel network phase formed from the interaction of cetyl alcohol and the POE surfactant, in excess of that required to stabilize oil droplets, with continuous phase water. Endothermic transitions between 25 and 100 °C were identified as components of this phase. Incorporation of cationic polymer into the formulation caused significant loss of structure to produce a mobile semisolid containing larger oil droplets. The microscopical and thermal data implied that the cationic polymer caused the swollen lamellar gel network phase to transform into non-swollen crystals of cetyl alcohol. In contrast, incorporation of gum of acacia produced a thicker cream than the control, with smaller droplet sizes and little evidence of the gel network. Microscopical and thermal data implied that although there were also interactions between gum of acacia and both the surfactant and the swollen gel network phase, the semisolid properties were probably because of the ability of the gum of acacia to stabilize and thicken the emulsion in the absence of the swollen lamellar network

    Factors influencing hydrocortisone permeation into human hair follicles: use of the skin sandwich system

    No full text
    The aim of the present study was to use the in vitro human skin sandwich system in order to quantify the influence of formulation variables on intrafollicular hydrocortisone permeation. The investigated variables were the pH and the viscosity of the topical formulation as well as the presence of chemical enhancers (carvone, menthone, oleic acid and sodium lauryl sulphate). Furthermore, skin sandwich hydration was also varied in order to determine if the method itself can be run using only partially hydrated skin tissues. It was determined that the follicular contribution to hydrocortisone flux decreased marginally with increasing alkalinity in the pH range 3-8.8. Intrafollicular penetration was markedly reduced when HPMC gels were used instead of an aqueous solution. Pretreating the skin with chemical enhancers also reduced the follicular contribution to flux, probably due to permeabilisation of the continuous stratum corneum. Furthermore, it was not possible to satisfactorily modify the skin sandwich method so that it could be deployed using less hydrated skin

    In-vivo opto-thermal measurement of epidermal thickness

    No full text
    We report a new opto-thermal method of measuring epidermal thickness in-vivo, using thermal waves generated within the epidermis which reach the surface after transit delays that depend on depth. The method is illustrated with a thickness map of a forearm, a tape stripping sequence and subsequent wound healing

    Assessment of drug permeability distributions in two different model skins

    No full text
    Past in vitro studies with human skin have indicated that drug permeability coefficient (Kp) distributions do not always follow a Gaussian-normal pattern. This has major statistical implications, exemplified by the fact that use of t-tests to evaluate significance is limited to normally distributed populations. Percutaneous absorption research often involves using animal or synthetic skins to simulate less readily available human skin. However, negligible work has been performed on assessing the permeability variabilities of these model membranes. This paper aims to fill this gap. To this end, four studies were undertaken representing two different drugs (caffeine and testosterone) with each drug penetrating through two different model skins (silicone membrane and pig skin). It was determined that in the silicone membrane studies, both compounds' Kp distributions could be fitted to a normal pattern. In contrast, in the pig skin studies, there were notable differences between each drug. While the testosterone Kp values could be fitted to a normal distribution, this was not possible with the caffeine Kp data, which could be fitted to a log-normal distribution. There is some evidence from the literature as well as physicochemical considerations that these outcomes may reflect general trends that are dependent upon both membrane and penetrant properties

    Opto-thermal technique for in-vivo stratum corneum hydration measurement

    No full text
    A new method for measuring stratum corneum hydration in-vivo, using opto-thermal transient emission radiometry with 2.94µm Er : YAG excitation and wavelength selective detection, is described. Results on skin recovery following exogenous hydration, skin stripping with Sellotape and wound healing are presented

    Towards a correlation between drug properties and in vitro transdermal flux variability

    No full text
    Over recent years, there has been growing evidence that the permeability coefficient variability describing any specific transdermal drug delivery system is not always normally distributed. However, since different researchers have used different test compounds, methodologies and skin types, it has been difficult to identify any general correlation between drug properties and flux variability. The aim of the present study was to investigate whether there was a relationship between these two variables. To this end, six different compounds (sucrose, adenosine, aldosterone, corticosterone, oestradiol and testosterone) exhibiting a range of partition coefficients but relatively similar molecular weights were screened by taking multiple replicate measurements of their permeation profiles as they penetrated across porcine skin in vitro. It was found that for relatively hydrophilic solutes (log Po/w ≤ not, vert, similar2.5), physicochemical properties that facilitated slow transdermal flux were associated with more positively skewed permeability coefficient distributions while rapid flux was associated with more symmetric distributions. However, no correlation could be found between molecular properties and the extent of statistical fit to either the normal or log-normal distribution

    Thermal investigation into the interaction of cetostearyl alcohol and a cetostearyl alcohol/sodium lauryl sulphate mixed emulsifier with liquid paraffin

    No full text
    In previous work, mobile nanoemulsions were prepared by the ultrasonication of liquid paraffin (LP) in water macroemulsions containing the mixed emulsifier (ME) sodium lauryl sulphate (SLS) and cetostearyl alcohol (CSA; Kim et al 2007). It was shown that the lamellar gel networks, formed when the ME interacts with water (ternary system), were not present in freshly prepared nanoemulsions. In these systems, the endotherm associated with the lamellar phase was absent and replaced by a prominent, broad unidentified endotherm between 50 and 60C. The aim of this work was to identify the nature of this endotherm to gain a better understanding of nanoemulsion microstructure. To this end, the interactions of the ME and its components in oil were investigated
    corecore