5,985 research outputs found

    On the Sample Information About Parameter and Prediction

    Full text link
    The Bayesian measure of sample information about the parameter, known as Lindley's measure, is widely used in various problems such as developing prior distributions, models for the likelihood functions and optimal designs. The predictive information is defined similarly and used for model selection and optimal designs, though to a lesser extent. The parameter and predictive information measures are proper utility functions and have been also used in combination. Yet the relationship between the two measures and the effects of conditional dependence between the observable quantities on the Bayesian information measures remain unexplored. We address both issues. The relationship between the two information measures is explored through the information provided by the sample about the parameter and prediction jointly. The role of dependence is explored along with the interplay between the information measures, prior and sampling design. For the conditionally independent sequence of observable quantities, decompositions of the joint information characterize Lindley's measure as the sample information about the parameter and prediction jointly and the predictive information as part of it. For the conditionally dependent case, the joint information about parameter and prediction exceeds Lindley's measure by an amount due to the dependence. More specific results are shown for the normal linear models and a broad subfamily of the exponential family. Conditionally independent samples provide relatively little information for prediction, and the gap between the parameter and predictive information measures grows rapidly with the sample size.Comment: Published in at http://dx.doi.org/10.1214/10-STS329 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Simulated Tornado Optimization

    Full text link
    We propose a swarm-based optimization algorithm inspired by air currents of a tornado. Two main air currents - spiral and updraft - are mimicked. Spiral motion is designed for exploration of new search areas and updraft movements is deployed for exploitation of a promising candidate solution. Assignment of just one search direction to each particle at each iteration, leads to low computational complexity of the proposed algorithm respect to the conventional algorithms. Regardless of the step size parameters, the only parameter of the proposed algorithm, called tornado diameter, can be efficiently adjusted by randomization. Numerical results over six different benchmark cost functions indicate comparable and, in some cases, better performance of the proposed algorithm respect to some other metaheuristics.Comment: 6 pages, 15 figures, 1 table, IEEE International Conference on Signal Processing and Intelligent System (ICSPIS16), Dec. 201

    A Class of Models for Uncorrelated Random Variables

    Get PDF
    We consider the class of multivariate distributions that gives the distribution of the sum of uncorrelated random variables by the product of their marginal distributions. This class is defined by a representation of the assumption of sub-independence, formulated previously in terms of the characteristic function and convolution, as a weaker assumption than independence for derivation of the distribution of the sum of random variables. The new representation is in terms of stochastic equivalence and the class of distributions is referred to as the summable uncorrelated marginals (SUM) distributions. The SUM distributions can be used as models for the joint distribution of uncorrelated random variables, irrespective of the strength of dependence between them. We provide a method for the construction of bivariate SUM distributions through linking any pair of identical symmetric probability density functions. We also give a formula for measuring the strength of dependence of the SUM models. A final result shows that under the condition of positive or negative orthant dependence, the SUM property implies independence
    corecore