5 research outputs found

    Meeting the Needs of Low-Resource Languages: The Value of Automatic Alignments via Pretrained Models

    Full text link
    Large multilingual models have inspired a new class of word alignment methods, which work well for the model's pretraining languages. However, the languages most in need of automatic alignment are low-resource and, thus, not typically included in the pretraining data. In this work, we ask: How do modern aligners perform on unseen languages, and are they better than traditional methods? We contribute gold-standard alignments for Bribri--Spanish, Guarani--Spanish, Quechua--Spanish, and Shipibo-Konibo--Spanish. With these, we evaluate state-of-the-art aligners with and without model adaptation to the target language. Finally, we also evaluate the resulting alignments extrinsically through two downstream tasks: named entity recognition and part-of-speech tagging. We find that although transformer-based methods generally outperform traditional models, the two classes of approach remain competitive with each other.Comment: EACL 202

    AmericasNLI: Machine translation and natural language inference systems for Indigenous languages of the Americas

    Full text link
    Little attention has been paid to the development of human language technology for truly low-resource languages—i.e., languages with limited amounts of digitally available text data, such as Indigenous languages. However, it has been shown that pretrained multilingual models are able to perform crosslingual transfer in a zero-shot setting even for low-resource languages which are unseen during pretraining. Yet, prior work evaluating performance on unseen languages has largely been limited to shallow token-level tasks. It remains unclear if zero-shot learning of deeper semantic tasks is possible for unseen languages. To explore this question, we present AmericasNLI, a natural language inference dataset covering 10 Indigenous languages of the Americas. We conduct experiments with pretrained models, exploring zero-shot learning in combination with model adaptation. Furthermore, as AmericasNLI is a multiway parallel dataset, we use it to benchmark the performance of different machine translation models for those languages. Finally, using a standard transformer model, we explore translation-based approaches for natural language inference. We find that the zero-shot performance of pretrained models without adaptation is poor for all languages in AmericasNLI, but model adaptation via continued pretraining results in improvements. All machine translation models are rather weak, but, surprisingly, translation-based approaches to natural language inference outperform all other models on that task

    Findings of the AmericasNLP 2021 Shared Task on Open Machine Translation for Indigenous Languages of the Americas

    Get PDF
    This paper presents the results of the 2021 Shared Task on Open Machine Translation for Indigenous Languages of the Americas. The shared task featured two independent tracks, and participants submitted machine translation systems for up to 10 indigenous languages. Overall, 8 teams participated with a total of 214 submissions. We provided training sets consisting of data collected from various sources, as well as manually translated sentences for the development and test sets. An official baseline trained on this data was also provided. Team submissions featured a variety of architectures, including both statistical and neural models, and for the majority of languages, many teams were able to considerably improve over the baseline. The best performing systems achieved 12.97 ChrF higher than baseline, when averaged across languages
    corecore