9 research outputs found
A Haplotype-Based GWAS Identified Trait-Improving QTL Alleles Controlling Agronomic Traits under Contrasting Nitrogen Fertilization Treatments in the MAGIC Wheat Population WM-800
The multi-parent-advanced-generation-intercross (MAGIC) population WM-800 was developed by intercrossing eight modern winter wheat cultivars to enhance the genetic diversity present in breeding populations. We cultivated WM-800 during two seasons in seven environments under two contrasting nitrogen fertilization treatments. WM-800 lines exhibited highly significant differences between treatments, as well as high heritabilities among the seven agronomic traits studied. The highest-yielding WM-line achieved an average yield increase of 4.40 dt/ha (5.2%) compared to the best founder cultivar Tobak. The subsequent genome-wide-association-study (GWAS), which was based on haplotypes, located QTL for seven agronomic traits including grain yield. In total, 40, 51, and 46 QTL were detected under low, high, and across nitrogen treatments, respectively. For example, the effect of QYLD_3A could be associated with the haplotype allele of cultivar Julius increasing yield by an average of 4.47 dt/ha (5.2%). A novel QTL on chromosome 2B exhibited pleiotropic effects, acting simultaneously on three-grain yield components (ears-per-square-meter, grains-per-ear, and thousand-grain-weight) and plant-height. These effects may be explained by a member of the nitrate-transporter-1 (NRT1)/peptide-family, TaNPF5.34, located 1.05 Mb apart. The WM-800 lines and favorable QTL haplotypes, associated with yield improvements, are currently implemented in wheat breeding programs to develop advanced nitrogen-use efficient wheat cultivars
Adaptive selection of founder segments and epistatic control of plant height in the MAGIC winter wheat population WM-800
Abstract Background Multi-parent advanced generation intercross (MAGIC) populations are a newly established tool to dissect quantitative traits. We developed the high resolution MAGIC wheat population WM-800, consisting of 910Â F4:6 lines derived from intercrossing eight recently released European winter wheat cultivars. Results Genotyping WM-800 with 7849 SNPs revealed a low mean genetic similarity of 59.7% between MAGIC lines. WM-800 harbours distinct genomic regions exposed to segregation distortion. These are mainly located on chromosomes 2 to 6 of the wheat B genome where founder specific DNA segments were positively or negatively selected. This suggests adaptive selection of individual founder alleles during population development. The application of a genome-wide association study identified 14 quantitative trait loci (QTL) controlling plant height in WM-800, including the known semi-dwarf genes Rht-B1 and Rht-D1 and a potentially novel QTL on chromosome 5A. Additionally, epistatic effects controlled plant height. For example, two loci on chromosomes 2B and 7B gave rise to an additive epistatic effect of 13.7Â cm. Conclusion The present study demonstrates that plant height in the MAGIC-WHEAT population WM-800 is mainly determined by large-effect QTL and di-genic epistatic interactions. As a proof of concept, our study confirms that WM-800 is a valuable tool to dissect the genetic architecture of important agronomic traits
Genome-metabolite associations revealed low heritability, high genetic complexity, and causal relations for leaf metabolites in winter wheat (Triticum aestivum)
We investigated associations between the metabolic phenotype, consisting of quantitative data of 76 metabolites from 135 contrasting winter wheat (Triticum aestivum) lines, and 17 372 single nucleotide polymorphism (SNP) markers. Metabolite profiles were generated from flag leaves of plants from three different environments, with average repeatabilities of 0.5-0.6. The average heritability of 0.25 was unaffected by the heading date. Correlations among metabolites reflected their functional grouping, highlighting the strict coordination of various routes of the citric acid cycle. Genome-wide association studies identified significant associations for six metabolic traits, namely oxalic acid, ornithine, L-arginine, pentose alcohol III, L-tyrosine, and a sugar oligomer (oligo II), with between one and 17 associated SNPs. Notable associations with genes regulating transcription or translation explained between 2.8% and 32.5% of the genotypic variance (pG). Further candidate genes comprised metabolite carriers (pG 32.5-38.1%), regulatory proteins (pG 0.3-11.1%), and metabolic enzymes (pG 2.5-32.5%). The combinatorial use of genomic and metabolic data to construct partially directed networks revealed causal inferences in the correlated metabolite traits and associated SNPs. The evaluated causal relationships will provide a basis for predicting the effects of genetic interferences on groups of correlated metabolic traits, and thus on specific metabolic phenotypes.</p
Additional file 1 of Adaptive selection of founder segments and epistatic control of plant height in the MAGIC winter wheat population WM-800
Table S1. SNP genotypes, plant height, QTL detection rate and genotype and allele frequencies for 910 MAGIC WHEAT lines and eight founders. Table S2. Plant height (cm) raw data for MAGIC WM-lines and founders for year 2015 and 2016. Table S3. Distribution of polymorphic SNPs within WM-800 according to genome positions of Wang et al.... [36]. Table S4. Mean, minimum, maximum and coefficient of variation (CV, in %) of linkage disequilibrium (r2) in WM-800, calculated per chromosome, subgenome and across the whole wheat genome. Table S5. Genetic similarity (GS) between founders and WM-800 lines based on 7849 polymorphic SNPs. Table S6. Principle Component Analysis (PCO) based on genetic similarities (GS) between founders and WM-800 lines. Table S7. Distribution of segregation distortion (SD) SNPs and segregation distortion regions (SDR) across the wheat genome and across allele frequency groups. Table S8. Selection of unique SNPs from AFG 1 and AFG 7 in WM-800. Major selection events, represented by > 10 SNPs, are indicated in bold. (XLSX 6618 kb
Additional file 2: of Adaptive selection of founder segments and epistatic control of plant height in the MAGIC winter wheat population WM-800
Figure S1. Linkage disequilibrium (r2) as a function of genetic distance (mean of whole genome) within WM-800. The horizontal line (0.02) indicates the 95th percentile of the LD distribution of unlinked pairs of loci, representing the population-specific critical r2 value. The curve (red line) was fitted with second-degree LOESS. (PNG 30 kb
Reciprocal recurrent genomic selection is impacted by genotype-by-environment interactions
Reciprocal recurrent genomic selection is a breeding strategy aimed at improving the hybrid performance of two base populations. It promises to significantly advance hybrid breeding in wheat. Against this backdrop, the main objective of this study was to empirically investigate the potential and limitations of reciprocal recurrent genomic selection. Genome-wide predictive equations were developed using genomic and phenotypic data from a comprehensive population of 1,604 single crosses between 120 female and 15 male wheat lines. Twenty superior female lines were selected for initiation of the reciprocal recurrent genomic selection program. Focusing on the female pool, one cycle was performed with genomic selection steps at the F<sub>2</sub> (60 out of 629 plants) and the F<sub>5</sub> stage (49 out of 382 plants). Selection gain for grain yield was evaluated at six locations. Analyses of the phenotypic data showed pronounced genotype-by-environment interactions with two environments that formed an outgroup compared to the environments used for the genome-wide prediction equations. Removing these two environments for further analysis resulted in a selection gain of 1.0 dt ha<sup>−1</sup> compared to the hybrids of the original 20 parental lines. This underscores the potential of reciprocal recurrent genomic selection to promote hybrid wheat breeding, but also highlights the need to develop robust genome-wide predictive equations