3 research outputs found

    Expression profiling of blood samples from an SU5416 Phase III metastatic colorectal cancer clinical trial: a novel strategy for biomarker identification

    Get PDF
    BACKGROUND: Microarray-based gene expression profiling is a powerful approach for the identification of molecular biomarkers of disease, particularly in human cancers. Utility of this approach to measure responses to therapy is less well established, in part due to challenges in obtaining serial biopsies. Identification of suitable surrogate tissues will help minimize limitations imposed by those challenges. This study describes an approach used to identify gene expression changes that might serve as surrogate biomarkers of drug activity. METHODS: Expression profiling using microarrays was applied to peripheral blood mononuclear cell (PBMC) samples obtained from patients with advanced colorectal cancer participating in a Phase III clinical trial. The PBMC samples were harvested pre-treatment and at the end of the first 6-week cycle from patients receiving standard of care chemotherapy or standard of care plus SU5416, a vascular endothelial growth factor (VEGF) receptor tyrosine kinase (RTK) inhibitor. Results from matched pairs of PBMC samples from 23 patients were queried for expression changes that consistently correlated with SU5416 administration. RESULTS: Thirteen transcripts met this selection criterion; six were further tested by quantitative RT-PCR analysis of 62 additional samples from this trial and a second SU5416 Phase III trial of similar design. This method confirmed four of these transcripts (CD24, lactoferrin, lipocalin 2, and MMP-9) as potential biomarkers of drug treatment. Discriminant analysis showed that expression profiles of these 4 transcripts could be used to classify patients by treatment arm in a predictive fashion. CONCLUSIONS: These results establish a foundation for the further exploration of peripheral blood cells as a surrogate system for biomarker analyses in clinical oncology studies

    Circulating T-Cell Subsets, Monocytes, and Natural Killer Cells in Peripartum Cardiomyopathy: Results From the Multicenter IPAC Study

    No full text
    •Immune cell subsets were examined in healthy postpartum and peripartum cardiomyopathy (PPCM) women.•In the early postpartum, PPCM women had lower NK and higher CD3+CD4–CD8–CD38+ T cell levels.•Levels largely normalized by 6 months postpartum. The aim of this work was to evaluate the hypothesis that the distribution of circulating immune cell subsets, or their activation state, is significantly different between peripartum cardiomyopathy (PPCM) and healthy postpartum (HP) women. PPCM is a major cause of maternal morbidity and mortality, and an immune-mediated etiology has been hypothesized. Cellular immunity, altered in pregnancy and the peripartum period, has been proposed to play a role in PPCM pathogenesis. The Investigation of Pregnancy-Associated Cardiomyopathy (IPAC) study enrolled 100 women presenting with a left ventricular ejection fraction of <0.45 within 2 months of delivery. Peripheral T-cell subsets, natural killer (NK) cells, and cellular activation markers were assessed by flow cytometry in PPCM women early (<6 wk), 2 months, and 6 months postpartum and compared with those of HP women and women with non–pregnancy-associated recent-onset cardiomyopathy (ROCM). Entry NK cell levels (CD3–CD56+CD16+; reported as % of CD3– cells) were significantly (P < .0003) reduced in PPCM (6.6 ± 4.9% of CD3– cells) compared to HP (11.9 ± 5%). Of T-cell subtypes, CD3+CD4–CD8–CD38+ cells differed significantly (P < .004) between PPCM (24.5 ± 12.5% of CD3+CD4–CD8– cells) and HP (12.5 ± 6.4%). PPCM patients demonstrated a rapid recovery of NK and CD3+CD4–CD8–CD38+ cell levels. However, black women had a delayed recovery of NK cells. A similar reduction of NK cells was observed in women with ROCM. Compared with HP control women, early postpartum PPCM women show significantly reduced NK cells, and higher CD3+CD4–CD8–CD38+ cells, which both normalize over time postpartum. The mechanistic role of NK cells and “double negative” (CD4–CD8–) T regulatory cells in PPCM requires further investigation
    corecore