5,722 research outputs found
Gravitational catalysis of chiral and color symmetry breaking of quark matter in hyperbolic space
We study the dynamical breaking of chiral and color symmetries of dense quark
matter in the ultrastatic hyperbolic spacetime in the framework
of an extended Nambu--Jona-Lasinio model. On the basis of analytical
expressions for chiral and color condensates as functions of curvature and
temperature, the phenomenon of dimensional reduction and gravitational
catalysis of symmetry breaking in strong gravitational field is demonstrated in
the regime of weak coupling constants. In the case of strong couplings it is
shown that curvature leads to small corrections to the flat-space values of
condensate and thus enhances the symmetry breaking effects. Finally, using
numerical calculations phase transitions under the influence of chemical
potential and negative curvature are considered and the phase portrait of the
system is constructed.Comment: 14 pages, 5 figure
Relativistic description of the charmonium mass spectrum
The charmonium mass spectrum is considered in the framework of the
constituent quark model with the relativistic treatment of the c quark. The
obtained masses are in good agreement with the existing experimental data
including the mass of eta_c(2S).Comment: 5 page
Charm mass corrections to the bottomonium mass spectrum
The one-loop corrections to the bottomonium mass spectrum due to the finite
charm mass are evaluated in the framework of the relativistic quark model. The
obtained corrections are compared with the results of perturbative QCD.Comment: 6 pages, references added, version to be published in Phys. Rev.
Masses of light tetraquarks and scalar mesons in the relativistic quark model
Masses of the ground state light tetraquarks are dynamically calculated in
the framework of the relativistic diquark-antidiquark picture. The internal
structure of the diquark is taken into account by calculating the form factor
of the diquark-gluon interaction in terms of the overlap integral of the
diquark wave functions. It is found that scalar mesons with masses below 1 GeV:
f_0(600) (\sigma), K^*_0(800) (\kappa), f_0(980) and a_0(980) agree well with
the light tetraquark interpretation.Comment: 9 pages, Report-no adde
Color superconductivity in the static Einstein Universe
We study the behavior of quark and diquark condensates in dense quark matter
under the influence of a gravitational field adopting as a simple model the
static dimensional Einstein Universe. Calculations are performed in the
framework of the extended Nambu--Jona-Lasinio model at finite temperature and
quark density on the basis of the thermodynamic potential and the gap
equations. Quark and diquark condensates as functions of the chemical potential
and temperature at different values of the curvature have been studied. Phase
portraits of the system have been constructed
Coherent description of the intrinsic and extrinsic anomalous Hall effect in disordered alloys on an level
A coherent description of the anomalous Hall effect (AHE) is presented that
is applicable to pure as well as disordered alloy systems by treating all
sources of the AHE on equal footing. This is achieved by an implementation of
the Kubo-St\v{r}eda equation using the fully relativistic
Korringa-Kohn-Rostoker (KKR) Green's function method in combination with the
Coherent Potential Approximation (CPA) alloy theory. Applications to the pure
elemental ferromagnets bcc-Fe and fcc-Ni led to results in full accordance with
previous work. For the alloy systems fcc-FePd and
fcc-NiPd very satisfying agreement with experiment could be
achieved for the anomalous Hall conductivity (AHC) over the whole range of
concentration. To interpret these results an extension of the definition for
the intrinsic AHC is suggested. Plotting the corresponding extrinsic AHC versus
the longitudinal conductivity a linear relation is found in the dilute regimes,
that allows a detailed discussion of the role of the skew and side-jump
scattering processes.Comment: * shortened manuscript * slight rewordings * changed line style in
Fig 1 * corrected misprinted S (skewness) factor * merged Fig. 3 with Fig. 1
* new citation introduce
Dynamical Fermion Masses Under the Influence of Kaluza-Klein Fermions and a Bulk Abelian Gauge Field
The dynamical fermion mass generation on a 3-brane in the 5D space-time is
discussed in a model with bulk fermions in interaction with fermions on the
brane assuming the presence of a constant abelian gauge field component
in the bulk. We calculate the effective potential as a function of the fermion
masses and the gauge field component . The masses can be found from the
stationarity condition for the effective potential (the gap equation). We
formulate the equation for the mass spectrum of the 4D--fermions. The phases
with finite and vanishing fermion masses are studied and the dependence of the
masses on the radius of the 5th dimension is analyzed. The influence of the
-component of the gauge field on the symmetry breaking is considered both
when this field is a background parameter and a dynamical variable. The
critical values of the field, the coupling constant and the radius are
examined.Comment: 9 pages, 4 figure
Excited heavy tetraquarks with hidden charm
The masses of the excited heavy tetraquarks with hidden charm are calculated
within the relativistic diquark-antidiquark picture. The dynamics of the light
quark in a heavy-light diquark is treated completely relativistically. The
diquark structure is taken into account by calculating the diquark-gluon form
factor. New experimental data on charmonium-like states above open charm
threshold are discussed. The obtained results indicate that X(3872), Y(4260),
Y(4360), Z(4248), Z(4433) and Y(4660) could be tetraquark states with hidden
charm.Comment: 11 page
- …