4 research outputs found

    3D printed plates based on generative design biomechanically outperform manual digital fitting and conventional systems printed in photopolymers in bridging mandibular bone defects of critical size in dogs

    Get PDF
    Conventional plate osteosynthesis of critical-sized bone defects in canine mandibles can fail to restore former functionality and stability due to adaption limits. Three-dimensional (3D) printed patient-specific implants are becoming increasingly popular as these can be customized to avoid critical structures, achieve perfect alignment to individual bone contours, and may provide better stability. Using a 3D surface model for the mandible, four plate designs were created and evaluated for their properties to stabilize a defined 30 mm critical-size bone defect. Design-1 was manually designed, and further shape optimized using Autodesk®Fusion 360 (ADF360) and finite element analysis (FE) to generate Design-2. Design-4 was created with the generative design (GD) function from ADF360 using preplaced screw terminals and loading conditions as boundaries. A 12-hole reconstruction titanium locking plate (LP) (2.4/3.0 mm) was also tested, which was scanned, converted to a STL file and 3D printed (Design-3). Each design was 3D printed from a photopolymer resin (VPW) and a photopolymer resin in combination with a thermoplastic elastomer (VPWT) and loaded in cantilever bending using a customized servo-hydraulic mechanical testing system; n = 5 repetitions each. No material defects pre- or post-failure testing were found in the printed mandibles and screws. Plate fractures were most often observed in similar locations, depending on the design. Design-4 has 2.8–3.6 times ultimate strength compared to other plates, even though only 40% more volume was used. Maximum load capacities did not differ significantly from those of the other three designs. All plate types, except D3, were 35% stronger when made of VPW, compared to VPWT. VPWT D3 plates were only 6% stronger. Generative design is faster and easier to handle than optimizing manually designed plates using FE to create customized implants with maximum load-bearing capacity and minimum material requirements. Although guidelines for selecting appropriate outcomes and subsequent refinements to the optimized design are still needed, this may represent a straightforward approach to implementing additive manufacturing in individualized surgical care. The aim of this work is to analyze different design techniques, which can later be used for the development of implants made of biocompatible materials

    Management of Suspected Cases of Feline Immunodeficiency Virus Infection in Eurasian Lynx (Lynx lynx) During an International Translocation Program.

    Get PDF
    The Eurasian lynx (Lynx lynx) population in Switzerland serves as a source for reintroductions in neighboring countries. In 2016-2017, three lynx from the same geographical area were found seropositive for feline immunodeficiency virus (FIV) in the framework of an international translocation program. This novel finding raised questions about the virus origin and pathogenicity to lynx, the emerging character of the infection, and the interpretation of serological results in other lynx caught for translocation. Archived serum samples from 84 lynx captured in 2001-2016 were retrospectively tested for FIV antibodies by Western blot. All archived samples were FIV-negative. The three seropositive lynx were monitored in quarantine enclosures prior to euthanasia and necropsy. They showed disease signs, pathological findings, and occurrence of co-infections reminding of those described in FIV-infected domestic cats. All attempts to isolate and characterize the virus failed but serological data and spatiotemporal proximity of the cases suggested emergence of a lentivirus with antigenic and pathogenic similarities to FIV in the Swiss lynx population. A decision scheme was developed to minimize potential health risks posed by FIV infection, both in the recipient and source lynx populations, considering conservation goals, animal welfare, and the limited action range resulting from local human conflicts. Development and implementation of a cautious decision scheme was particularly challenging because FIV pathogenic potential in lynx was unclear, negative FIV serological results obtained within the first weeks after infection are unpredictable, and neither euthanasia nor repatriation of multiple lynx was acceptable options. The proposed scheme distinguished between three scenarios: release at the capture site, translocation, or euthanasia. Until April 2021, none of the 40 lynx newly captured in Switzerland tested FIV-seropositive. Altogether, seropositivity to FIV was documented in none of 124 lynx tested at their first capture, but three of them seroconverted in 2016-2017. Diagnosis of FIV infection in the three seropositive lynx remains uncertain, but clinical observations and pathological findings confirmed that euthanasia was appropriate. Our experiences underline the necessity to include FIV in pathogen screenings of free-ranging European wild felids, the importance of lynx health monitoring, and the usefulness of health protocols in wildlife translocation

    Management of Suspected Cases of Feline Immunodeficiency Virus Infection in Eurasian Lynx (Lynx lynx) During an International Translocation Program

    Full text link
    The Eurasian lynx (Lynx lynx) population in Switzerland serves as a source for reintroductions in neighboring countries. In 2016-2017, three lynx from the same geographical area were found seropositive for feline immunodeficiency virus (FIV) in the framework of an international translocation program. This novel finding raised questions about the virus origin and pathogenicity to lynx, the emerging character of the infection, and the interpretation of serological results in other lynx caught for translocation. Archived serum samples from 84 lynx captured in 2001-2016 were retrospectively tested for FIV antibodies by Western blot. All archived samples were FIV-negative. The three seropositive lynx were monitored in quarantine enclosures prior to euthanasia and necropsy. They showed disease signs, pathological findings, and occurrence of co-infections reminding of those described in FIV-infected domestic cats. All attempts to isolate and characterize the virus failed but serological data and spatiotemporal proximity of the cases suggested emergence of a lentivirus with antigenic and pathogenic similarities to FIV in the Swiss lynx population. A decision scheme was developed to minimize potential health risks posed by FIV infection, both in the recipient and source lynx populations, considering conservation goals, animal welfare, and the limited action range resulting from local human conflicts. Development and implementation of a cautious decision scheme was particularly challenging because FIV pathogenic potential in lynx was unclear, negative FIV serological results obtained within the first weeks after infection are unpredictable, and neither euthanasia nor repatriation of multiple lynx was acceptable options. The proposed scheme distinguished between three scenarios: release at the capture site, translocation, or euthanasia. Until April 2021, none of the 40 lynx newly captured in Switzerland tested FIV-seropositive. Altogether, seropositivity to FIV was documented in none of 124 lynx tested at their first capture, but three of them seroconverted in 2016-2017. Diagnosis of FIV infection in the three seropositive lynx remains uncertain, but clinical observations and pathological findings confirmed that euthanasia was appropriate. Our experiences underline the necessity to include FIV in pathogen screenings of free-ranging European wild felids, the importance of lynx health monitoring, and the usefulness of health protocols in wildlife translocation

    3D printed plates based on generative design biomechanically outperform manual digital fitting and conventional systems printed in photopolymers in bridging mandibular bone defects of critical size in dogs

    No full text
    Conventional plate osteosynthesis of critical-sized bone defects in canine mandibles can fail to restore former functionality and stability due to adaption limits. Three-dimensional (3D) printed patient-specific implants are becoming increasingly popular as these can be customized to avoid critical structures, achieve perfect alignment to individual bone contours, and may provide better stability. Using a 3D surface model for the mandible, four plate designs were created and evaluated for their properties to stabilize a defined 30 mm critical-size bone defect. Design-1 was manually designed, and further shape optimized using Autodesk® Fusion 360 (ADF360) and finite element analysis (FE) to generate Design-2. Design-4 was created with the generative design (GD) function from ADF360 using preplaced screw terminals and loading conditions as boundaries. A 12-hole reconstruction titanium locking plate (LP) (2.4/3.0 mm) was also tested, which was scanned, converted to a STL file and 3D printed (Design-3). Each design was 3D printed from a photopolymer resin (VPW) and a photopolymer resin in combination with a thermoplastic elastomer (VPWT) and loaded in cantilever bending using a customized servo-hydraulic mechanical testing system; n = 5 repetitions each. No material defects pre- or post-failure testing were found in the printed mandibles and screws. Plate fractures were most often observed in similar locations, depending on the design. Design-4 has 2.8–3.6 times ultimate strength compared to other plates, even though only 40% more volume was used. Maximum load capacities did not differ significantly from those of the other three designs. All plate types, except D3, were 35% stronger when made of VPW, compared to VPWT. VPWT D3 plates were only 6% stronger. Generative design is faster and easier to handle than optimizing manually designed plates using FE to create customized implants with maximum load-bearing capacity and minimum material requirements. Although guidelines for selecting appropriate outcomes and subsequent refinements to the optimized design are still needed, this may represent a straightforward approach to implementing additive manufacturing in individualized surgical care. The aim of this work is to analyze different design techniques, which can later be used for the development of implants made of biocompatible materials.Conventional plate osteosynthesis of critical-sized bone defects in canine mandibles can fail to restore former functionality and stability due to adaption limits. Three-dimensional (3D) printed patient-specific implants are becoming increasingly popular as these can be customized to avoid critical structures, achieve perfect alignment to individual bone contours, and may provide better stability. Using a 3D surface model for the mandible, four plate designs were created and evaluated for their properties to stabilize a defined 30 mm critical-size bone defect. Design-1 was manually designed, and further shape optimized using Autodesk® Fusion 360 (ADF360) and finite element analysis (FE) to generate Design-2. Design-4 was created with the generative design (GD) function from ADF360 using preplaced screw terminals and loading conditions as boundaries. A 12-hole reconstruction titanium locking plate (LP) (2.4/3.0 mm) was also tested, which was scanned, converted to a STL file and 3D printed (Design-3). Each design was 3D printed from a photopolymer resin (VPW) and a photopolymer resin in combination with a thermoplastic elastomer (VPWT) and loaded in cantilever bending using a customized servo-hydraulic mechanical testing system; n = 5 repetitions each. No material defects pre- or post-failure testing were found in the printed mandibles and screws. Plate fractures were most often observed in similar locations, depending on the design. Design-4 has 2.8–3.6 times ultimate strength compared to other plates, even though only 40% more volume was used. Maximum load capacities did not differ significantly from those of the other three designs. All plate types, except D3, were 35% stronger when made of VPW, compared to VPWT. VPWT D3 plates were only 6% stronger. Generative design is faster and easier to handle than optimizing manually designed plates using FE to create customized implants with maximum load-bearing capacity and minimum material requirements. Although guidelines for selecting appropriate outcomes and subsequent refinements to the optimized design are still needed, this may represent a straightforward approach to implementing additive manufacturing in individualized surgical care. The aim of this work is to analyze different design techniques, which can later be used for the development of implants made of biocompatible materials
    corecore