2,044 research outputs found

    A widely tunable few electron droplet

    Full text link
    Quasi-static transport measurements are employed to characterize a few electron quantum dot electrostatically defined in a GaAs/AlGaAs heterostructure. The gate geometry allows observations on one and the same electron droplet within a wide range of coupling strengths to the leads. The weak coupling regime is described by discrete quantum states. At strong interaction with the leads Kondo phenomena are observed as a function of a magnetic field. By varying gate voltages the electron droplet can, in addition, be distorted into a double quantum dot with a strong interdot tunnel coupling while keeping track of the number of trapped electrons.Comment: 11 pages, 5 figure

    Hopping conductivity in heavily doped n-type GaAs layers in the quantum Hall effect regime

    Full text link
    We investigate the magnetoresistance of epitaxially grown, heavily doped n-type GaAs layers with thickness (40-50 nm) larger than the electronic mean free path (23 nm). The temperature dependence of the dissipative resistance R_{xx} in the quantum Hall effect regime can be well described by a hopping law (R_{xx} \propto exp{-(T_0/T)^p}) with p=0.6. We discuss this result in terms of variable range hopping in a Coulomb gap together with a dependence of the electron localization length on the energy in the gap. The value of the exponent p>0.5 shows that electron-electron interactions have to be taken into account in order to explain the occurrence of the quantum Hall effect in these samples, which have a three-dimensional single electron density of states.Comment: 5 pages, 2 figures, 1 tabl

    Kondo effect in a one-electron double quantum dot: Oscillations of the Kondo current in a weak magnetic field

    Full text link
    We present transport measurements of the Kondo effect in a double quantum dot charged with only one or two electrons, respectively. For the one electron case we observe a surprising quasi-periodic oscillation of the Kondo conductance as a function of a small perpendicular magnetic field |B| \lesssim 50mT. We discuss possible explanations of this effect and interpret it by means of a fine tuning of the energy mismatch of the single dot levels of the two quantum dots. The observed degree of control implies important consequences for applications in quantum information processing
    • …
    corecore