58 research outputs found
Model-independent extraction of matrix elements from top-quark measurements at hadron colliders
Current methods to extract the quark-mixing matrix element from
single-top production measurements assume that : top quarks decay into quarks with 100% branching fraction,
s-channel single-top production is always accompanied by a quark and
initial-state contributions from and quarks in the -channel
production of single top quarks are neglected. Triggered by a recent
measurement of the ratio
performed by the D0 collaboration, we consider a extraction method
that takes into account non zero d- and s-quark contributions both in
production and decay. We propose a strategy that allows to extract consistently
and in a model-independent way the quark mixing matrix elements ,
, and from the measurement of and from single-top
measured event yields. As an illustration, we apply our method to the Tevatron
data using a CDF analysis of the measured single-top event yield with two jets
in the final state one of which is identified as a -quark jet. We constrain
the matrix elements within a four-generation scenario by combining
the results with those obtained from direct measurements in flavor physics and
determine the preferred range for the top-quark decay width within different
scenarios.Comment: 36 pages, 17 figure
Phylogenetic Findings Suggest Possible New Habitat and Routes of Infection of Human Eumyctoma
Eumycetoma is a traumatic fungal infection in tropical and subtropical areas that may lead to severe disability. Madurella mycetomatis is one of the prevalent etiologic agents in arid Northeastern Africa. The source of infection has not been clarified. Subcutaneous inoculation from plant thorns has been hypothesized, but attempts to detect the fungus in relevant material have remained unsuccessful. The present study aims to find clues to reveal the natural habitat of Madurella species using a phylogenetic approach, i.e. by comparison of neighboring taxa with known ecology. Four species of Madurella were included in a large data set of species of Chaetomium, Chaetomidium, Thielavia, and Papulaspora (n = 128) using sequences of the universal fungal barcode gene rDNA ITS and the partial LSU gene sequence. Our study demonstrates that Madurella species are nested within the Chaetomiaceae, a family of fungi that mainly inhabit animal dung, enriched soil, and indoor environments. We hypothesize that cattle dung, ubiquitously present in rural East Africa, plays a significant role in the ecology of Madurella. If cow dung is an essential factor in inoculation by Madurella, preventative measures may involve the use of appropriate footwear in addition to restructuring of villages to reduce the frequency of contact with etiologic agents of mycetoma. On the other hand, the Chaetomiaceae possess a hidden clinical potential which needs to be explored
Gutzwiller-Correlated Wave Functions: Application to Ferromagnetic Nickel
Ferromagnetic Nickel is the most celebrated iron group metal with pronounced
discrepancies between the experimental electronic properties and predictions of
density functional theories. In this work, we show in detail that the recently
developed multi-band Gutzwiller theory provides a very good description of the
quasi-particle band structure of nickel. We obtain the correct exchange
splittings and we reproduce the experimental Fermi-surface topology. The
correct (111)-direction of the magnetic easy axis and the right order of
magnitude of the magnetic anisotropy are found. Our theory also reproduces the
experimentally observed change of the Fermi-surface topology when the magnetic
moment is oriented along the (001)-axis. In addition to the numerical study, we
give an analytical derivation for a much larger class of variational
wave-functions than in previous investigations. In particular, we cover cases
of superconductivity in multi-band lattice systems.Comment: 35 pages, 3 figure
Electroweak Precision Observables within a Fourth Generation Model with General Flavour Structure
We calculate the contributions to electroweak precision observables (EWPOs)
due to a fourth generation of fermions with the most general (quark-)flavour
structure (but assuming Dirac neutrinos and a trivial flavour structure in the
lepton sector). The new-physics contributions to the EWPOs are calculated at
one-loop order using automated tools (FeynArts/FormCalc). No further
approximations are made in our calculation. We discuss the size of non-oblique
contributions arising from Z--quark--anti-quark vertex corrections and the
dependence of the EWPOs on all CKM mixing angles involving the fourth
generation. We find that the electroweak precision observables are sensitive to
two of the fourth-generation mixing angles and that the corresponding
constraints on these angles are competitive with those obtained from flavour
physics. For non-trivial 4x4 flavour structures, the non-oblique contributions
lead to relative corrections of several permille and should be included in a
global fit
The <i>Castalia</i> mission to Main Belt Comet 133P/Elst-Pizarro
We describe Castalia, a proposed mission to rendezvous with a Main Belt Comet (MBC), 133P/Elst-Pizarro. MBCs are a recently discovered population of apparently icy bodies within the main asteroid belt between Mars and Jupiter, which may represent the remnants of the population which supplied the early Earth with water. Castalia will perform the first exploration of this population by characterising 133P in detail, solving the puzzle of the MBC’s activity, and making the first in situ measurements of water in the asteroid belt. In many ways a successor to ESA’s highly successful Rosetta mission, Castalia will allow direct comparison between very different classes of comet, including measuring critical isotope ratios, plasma and dust properties. It will also feature the first radar system to visit a minor body, mapping the ice in the interior. Castalia was proposed, in slightly different versions, to the ESA M4 and M5 calls within the Cosmic Vision programme. We describe the science motivation for the mission, the measurements required to achieve the scientific goals, and the proposed instrument payload and spacecraft to achieve these
Higgs production and decay with a fourth Standard-Model-like fermion generation
State-of-the-art predictions for the Higgs-boson production cross section via
gluon fusion and for all relevant Higgs-boson decay channels are presented in
the presence of a fourth Standard-Model-like fermion generation. The
qualitative features of the most important differences to the genuine Standard
Model are pointed out, and the use of the available tools for the predictions
is described. For a generic mass scale of 400-600 GeV in the fourth generation
explicit numerical results for the cross section and decay widths are
presented, revealing extremely large electroweak radiative corrections, e.g.,
to the cross section and the Higgs decay into WW or ZZ pairs, where they amount
to about -50% or more. This signals the onset of a non-perturbative regime due
to the large Yukawa couplings in the fourth generation. An estimate of the
respective large theoretical uncertainties is presented as well.Comment: 24 pages, 5 figures, contribution to LHC Higgs Cross Section Working
Group https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections,
discussion considerably extended to more scenarios for heavy fermion masse
On the origin and evolution of the material in 67P/Churyumov-Gerasimenko
International audiencePrimitive objects like comets hold important information on the material that formed our solar system. Several comets have been visited by spacecraft and many more have been observed through Earth- and space-based telescopes. Still our understanding remains limited. Molecular abundances in comets have been shown to be similar to interstellar ices and thus indicate that common processes and conditions were involved in their formation. The samples returned by the Stardust mission to comet Wild 2 showed that the bulk refractory material was processed by high temperatures in the vicinity of the early sun. The recent Rosetta mission acquired a wealth of new data on the composition of comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) and complemented earlier observations of other comets. The isotopic, elemental, and molecular abundances of the volatile, semi-volatile, and refractory phases brought many new insights into the origin and processing of the incorporated material. The emerging picture after Rosetta is that at least part of the volatile material was formed before the solar system and that cometary nuclei agglomerated over a wide range of heliocentric distances, different from where they are found today. Deviations from bulk solar system abundances indicate that the material was not fully homogenized at the location of comet formation, despite the radial mixing implied by the Stardust results. Post-formation evolution of the material might play an important role, which further complicates the picture. This paper discusses these major findings of the Rosetta mission with respect to the origin of the material and puts them in the context of what we know from other comets and solar system objects
The IASLC/ITMIG thymic epithelial tumors staging project: Proposals for the T component for the forthcoming (8th) edition of the TNM classification of malignant tumors
Despite longstanding recognition of thymic epithelial neoplasms, there is no official American Joint Committee on Cancer/ Union for International Cancer Control stage classification. This article summarizes proposals for classification of the T component of stage classification for use in the 8th edition of the tumor, node, metastasis classification for malignant tumors. This represents the output of the International Association for the Study of Lung Cancer and the International Thymic Malignancies Interest Group Staging and Prognostics Factor Committee, which assembled and analyzed a worldwide database of 10,808 patients with thymic malignancies from 105 sites. The committee proposes division of the T component into four categories, representing levels of invasion. T1 includes tumors localized to the thymus and anterior mediastinal fat, regardless of capsular invasion, up to and including infiltration through the mediastinal pleura. Invasion of the pericardium is designated as T2. T3 includes tumors with direct involvement of a group of mediastinal structures either singly or in combination: lung, brachiocephalic vein, superior vena cava, chest wall, and phrenic nerve. Invasion of more central structures constitutes T4: aorta and arch vessels, intrapericardial pulmonary artery, myocardium, trachea, and esophagus. Size did not emerge as a useful descriptor for stage classification. This classification of T categories, combined with a classification of N and M categories, provides a basis for a robust tumor, node, metastasis classification system for the 8th edition of American Joint Committee on Cancer/Union for International Cancer Control stage classification
- …