4,127 research outputs found
Norms of inner derivations for multiplier algebras of C â -algebras and group C â -algebras, II
Peer reviewedPostprin
REVIEW: Community Journalism: Relentlessly Local, 3rd ed.
Review of the non-fiction book Community Journalism: Relentlessly Local, 3rd ed. by Jock Lauterer
REVIEW: The Untold Story of Shiloh: The Battle and the Battlefield
Review of the non-fiction book The Untold Story of Shiloh: The Battle and the Battlefield, by Timothy B. Smith
The 3D structure of the Lagrangian acceleration in turbulent flows
We report experimental results on the three dimensional Lagrangian
acceleration in highly turbulent flows. Tracer particles are tracked optically
using four silicon strip detectors from high energy physics that provide high
temporal and spatial resolution. The components of the acceleration are shown
to be statistically dependent. The probability density function (PDF) of the
acceleration magnitude is comparable to a log-normal distribution. Assuming
isotropy, a log-normal distribution of the magnitude can account for the
observed dependency of the components. The time dynamics of the acceleration
components is found to be typical of the dissipation scales whereas the
magnitude evolves over longer times, possibly close to the integral time scale.Comment: accepted for publication in Physical Review Letter
A local hidden variable model of quantum correlation exploiting the detection loophole
A local hidden variable model exploiting the detection loophole to reproduce
exactly the quantum correlation of the singlet state is presented. The model is
shown to be compatible with both the CHSH and the CH Bell inequalities.
Moreover, it bears the same rotational symmetry as spins. The reason why the
model can reproduce the quantum correlation without violating the Bell theorem
is that in the model the efficiency of the detectors depends on the local
hidden variable. On average the detector efficiency is limited to 75%.Comment: 6 pages + 1 figure. A software producing data violating Bell
inequality between two classical computers can be downloaded from
http://www.gapoptique.unige.ch/News/BellSoft.as
Consistent Quantum Counterfactuals
An analysis using classical stochastic processes is used to construct a
consistent system of quantum counterfactual reasoning. When applied to a
counterfactual version of Hardy's paradox, it shows that the probabilistic
character of quantum reasoning together with the ``one framework'' rule
prevents a logical contradiction, and there is no evidence for any mysterious
nonlocal influences. Counterfactual reasoning can support a realistic
interpretation of standard quantum theory (measurements reveal what is actually
there) under appropriate circumstances.Comment: Minor modifications to make it agree with published version. Latex 8
pages, 2 figure
- âŠ