2,578 research outputs found
Entropy and Long range correlations in literary English
Recently long range correlations were detected in nucleotide sequences and in
human writings by several authors. We undertake here a systematic investigation
of two books, Moby Dick by H. Melville and Grimm's tales, with respect to the
existence of long range correlations. The analysis is based on the calculation
of entropy like quantities as the mutual information for pairs of letters and
the entropy, the mean uncertainty, per letter. We further estimate the number
of different subwords of a given length . Filtering out the contributions
due to the effects of the finite length of the texts, we find correlations
ranging to a few hundred letters. Scaling laws for the mutual information
(decay with a power law), for the entropy per letter (decay with the inverse
square root of ) and for the word numbers (stretched exponential growth with
and with a power law of the text length) were found.Comment: 8 page
The evolution of the cluster X-ray scaling relations in the WARPS sample at 0.6<z<1.0
The X-ray properties of a sample of 11 high-redshift (0.6<z<1.0) clusters
observed with Chandra and/or XMM are used to investigate the evolution of the
cluster scaling relations. The observed evolution of the L-T and M-L relations
is consistent with simple self-similar predictions, in which the properties of
clusters reflect the properties of the universe at their redshift of
observation. When the systematic effect of assuming isothermality on the
derived masses of the high-redshift clusters is taken into account, the
high-redshift M-T and Mgas-T relations are also consistent with self-similar
evolution. Under the assumption that the model of self-similar evolution is
correct and that the local systems formed via a single spherical collapse, the
high-redshift L-T relation is consistent with the high-z clusters having formed
at a significantly higher redshift than the local systems. The data are also
consistent with the more realistic scenario of clusters forming via the
continuous accretion of material. The slope of the L-T relation at
high-redshift (B=3.29+/-0.38) is consistent with the local relation, and
significantly steeper then the self-similar prediction of B=2. This suggests
that the non-gravitational processes causing the steepening occurred at z>1 or
in the early stages of the clusters' formation, prior to their observation. The
properties of the intra-cluster medium at high-redshift are found to be similar
to those in the local universe. The mean surface-brightness profile slope for
the sample is 0.66+/-0.05, the mean gas mass fractions within R2500 and R200
are 0.073+/-0.010 and 0.12+/-0.02 respectively, and the mean metallicity of the
sample is 0.28+/-0.16 solar.Comment: 23 pages, 17 figures. Accepted for publication in MNRAS. Revised to
match accepted version: reanalysed data with latest calibrations, several
minor changes. Conclusions unchange
Constraining spatial variations of the fine structure constant using clusters of galaxies and Planck data
We propose an improved methodology to constrain spatial variations of the
fine structure constant using clusters of galaxies. We use the {\it Planck}
2013 data to measure the thermal Sunyaev-Zeldovich effect at the location of
618 X-ray selected clusters. We then use a Monte Carlo Markov Chain algorithm
to obtain the temperature of the Cosmic Microwave Background at the location of
each galaxy cluster. When fitting three different phenomenological
parameterizations allowing for monopole and dipole amplitudes in the value of
the fine structure constant we improve the results of earlier analysis
involving clusters and the CMB power spectrum, and we also found that the
best-fit direction of a hypothetical dipole is compatible with the direction of
other known anomalies. Although the constraining power of our current datasets
do not allow us to test the indications of a fine-structure constant dipole
obtained though high-resolution optical/UV spectroscopy, our results do
highlight that clusters of galaxies will be a very powerful tool to probe
fundamental physics at low redshift.Comment: 11 pages, 5 figures and 3 tables. Accepted for publication in
Physical Review
Canonical active Brownian motion
Active Brownian motion is the complex motion of active Brownian particles.
They are active in the sense that they can transform their internal energy into
energy of motion and thus create complex motion patterns. Theories of active
Brownian motion so far imposed couplings between the internal energy and the
kinetic energy of the system. We investigate how this idea can be naturally
taken further to include also couplings to the potential energy, which finally
leads to a general theory of canonical dissipative systems. Explicit analytical
and numerical studies are done for the motion of one particle in harmonic
external potentials. Apart from stationary solutions, we study non-equilibrium
dynamics and show the existence of various bifurcation phenomena.Comment: 11 pages, 6 figures, a few remarks and references adde
The colour-magnitude relations of ClJ1226.9+3332, a massive cluster of galaxies at z=0.89
(Abridged) The colour-magnitude relations of one of the most massive, high
redshift clusters of galaxies known have been studied. Photometry has been
measured in the V, R, I, z, F606W, F814W, J and K bands to a depth of K*+2.5
and spectroscopy confirms 27 K band selected cluster members. The V-K colours
are equivalent to a rest-frame colour of ~2700A-J, and provide a very sensitive
measure of star-formation activity. HST ACS imaging has been used to
morphologically classify the galaxies.
The cluster has a low early-type fraction compared to nearby clusters, with
only 33% of the cluster members having types E or S0. The early-type member
galaxies form a clear red-sequence in all colours. The scatter and slope of the
relations show no evolution compared to the equivalent Coma cluster relations,
suggesting the stellar populations are already very old. The normalisation of
the relations has been compared to models based on synthetic stellar
populations, and are most consistent with stellar populations forming at z>3.
Some late-type galaxies were found to lie on the red-sequence, suggesting that
they have very similar stellar populations to the early-types.
These results present a picture of a cluster in which the early-type galaxies
are all old, but in which there must be future morphological transformation of
galaxies to match the early-type fraction of nearby clusters. In order to
preserve the tight colour-magnitude relation of early-types seen in nearby
clusters, the late-type galaxies must transform their colours, through the
cessation of star-formation, before the morphological transformation occurs.
Such evolution is observed in the late-types lying on the colour-magnitude
relation.Comment: Accepted for publication in MNRAS. 14 pages, 5 figure
Discovery of a very X-ray luminous galaxy cluster at z=0.89 in the WARPS survey
We report the discovery of the galaxy cluster ClJ1226.9+3332 in the Wide
Angle ROSAT Pointed Survey (WARPS). At z=0.888 and L_X=1.1e45 erg/s (0.5-2.0
keV, h_0=0.5) ClJ1226.9+3332 is the most distant X-ray luminous cluster
currently known. The mere existence of this system represents a huge problem
for Omega_0=1 world models.
At the modest (off-axis) resolution of the ROSAT PSPC observation in which
the system was detected, ClJ1226.9+3332 appears relaxed; an off-axis HRI
observation confirms this impression and rules out significant contamination
from point sources. However, in moderately deep optical images (R and I band)
the cluster exhibits signs of substructure in its apparent galaxy distribution.
A first crude estimate of the velocity dispersion of the cluster galaxies based
on six redshifts yields a high value of 1650 km/s, indicative of a very massive
cluster and/or the presence of substructure along the line of sight. While a
more accurate assessment of the dynamical state of this system requires much
better data at both optical and X-ray wavelengths, the high mass of the cluster
has already been unambiguously confirmed by a very strong detection of the
Sunyaev-Zel'dovich effect in its direction (Joy et al. 2001).
Using ClJ1226.9+3332 and ClJ0152.7-1357 (z=0.835), the second-most distant
X-ray luminous cluster currently known and also a WARPS discovery, we obtain a
first estimate of the cluster X-ray luminosity function at 0.8<z<1.4 and
L_X>5e44 erg/s. Using the best currently available data, we find the comoving
space density of very distant, massive clusters to be in excellent agreement
with the value measured locally (z<0.3), and conclude that negative evolution
is not required at these luminosities out to z~1. (truncated)Comment: accepted for publication in ApJ Letters, 6 pages, 2 figures, uses
emulateapj.st
ROSAT PSPC Observations of the Richest () ACO Clusters
We have compiled an X-ray catalog of optically selected rich clusters of
galaxies observed by the PSPC during the pointed GO phase of the ROSAT mission.
This paper contains a systematic X-ray analysis of 150 clusters with an optical
richness classification of from the ACO catalog (Abell, Corwin, and
Olowin 1989). All clusters were observed within 45' of the optical axis of the
telescope during pointed PSPC observations. For each cluster, we calculate: the
net 0.5-2.0 keV PSPC count rate (or upper limit) in a 1 Mpc radius
aperture, 0.5-2.0 keV flux and luminosity, bolometric luminosity, and X-ray
centroid. The cluster sample is then used to examine correlations between the
X-ray and optical properties of clusters, derive the X-ray luminosity function
of clusters with different optical classifications, and obtain a quantitative
estimate of contamination (i.e, the fraction of clusters with an optical
richness significantly overestimated due to interloping galaxies) in the ACO
catalog
- âŠ