840 research outputs found
Particle interactions and lattice dynamics: Scenarios for efficient bidirectional stochastic transport?
Intracellular transport processes driven by molecular motors can be described
by stochastic lattice models of self-driven particles. Here we focus on
bidirectional transport models excluding the exchange of particles on the same
track. We explore the possibility to have efficient transport in these systems.
One possibility would be to have appropriate interactions between the various
motors' species, so as to form lanes. However, we show that the lane formation
mechanism based on modified attachment/detachment rates as it was proposed
previously is not necessarily connected to an efficient transport state and is
suppressed when the diffusivity of unbound particles is finite. We propose
another interaction mechanism based on obstacle avoidance that allows to have
lane formation for limited diffusion. Besides, we had shown in a separate paper
that the dynamics of the lattice itself could be a key ingredient for the
efficiency of bidirectional transport. Here we show that lattice dynamics and
interactions can both contribute in a cooperative way to the efficiency of
transport. In particular, lattice dynamics can decrease the interaction
threshold beyond which lanes form. Lattice dynamics may also enhance the
transport capacity of the system even when lane formation is suppressed.Comment: 25 pages, 17 figures, 2 table
Non-intrinsic origin of the Colossal Dielectric Constants in CaCu3Ti4O12
The dielectric properties of CaCu3Ti4O12, a material showing colossal values
of the dielectric constant, were investigated in a broad temperature and
frequency range extending up to 1.3 GHz. A detailed equivalent circuit analysis
of the results and two crucial experiments, employing different types of
contacts and varying sample thickness, provide clear evidence that the
apparently high values of the dielectric constant in CaCu3Ti4O12 are
non-intrinsic and due to electrode polarization effects. The intrinsic
properties of CaCu3Ti4O12 are characterized by charge transport via hopping of
localized charge carriers and a relatively high dielectric constant of the
order of 100.Comment: 4 pages, 4 figure
Broadband dielectric response of CaCu3Ti4O12: From dc to the electronic transition regime
We report on phonon properties and electronic transitions in CaCu3Ti4O12, a
material which reveals a colossal dielectric constant at room temperature
without any ferroelectric transition. The results of far- and mid-infrared
measurements are compared to those obtained by broadband dielectric and
millimeter-wave spectroscopy on the same single crystal. The unusual
temperature dependence of phonon eigenfrequencies, dampings and ionic plasma
frequencies of low lying phonon modes are analyzed and discussed in detail.
Electronic excitations below 4 eV are identified as transitions between full
and empty hybridized oxygen-copper bands and between oxygen-copper and
unoccupied Ti 3d bands. The unusually small band gap determined from the
dc-conductivity (~200 meV) compares well with the optical results.Comment: 7 pages, 8 figure
Dielectric behavior of Copper Tantalum Oxide
A thorough investigation of the dielectric properties of Cu2Ta4O12, a
material crystallizing in a pseudo-cubic, perovskite-derived structure is
presented. We measured the dielectric constant and conductivity of single
crystals in an exceptionally broad frequency range up to GHz frequencies and at
temperatures from 25 - 500 K. The detected dielectric constant is unusually
high (reaching values up to 105) and almost constant in a broad frequency and
temperature range. Cu2Ta4O12 possesses a crystal structure similar to
CaCu3Ti4O12, the compound for which such an unusually high dielectric constant
was first observed. An analysis of the results using a simple equivalent
circuit and measurements with different types of contact revealed that
extrinsic interfacial polarization effects, derived from surface barrier
capacitors are the origin of the observed giant dielectric constants. The
intrinsic properties of Cu2Ta4O12 are characterized by a (still relatively
high) dielectric constant in the order of 100 and by charge transport via
hopping conduction of Anderson-localized charge carriers.Comment: 18 pages, 6 figures, submitted to Jouranl of Physical Chemestr
Broadband dielectric spectroscopy on single-crystalline and ceramic CaCu3Ti4O12
We present dielectric measurements of the colossal dielectric constant
material CaCu3Ti4O12 extending up to 1.3 GHz also covering so far only rarely
investigated single crystalline samples. Special emphasis is put on the second
relaxation reported in several works on polycrystals, which we detect also in
single crystals. For polycrystalline samples we provide a recipe to achieve
values of the dielectric constant as high as in single crystals.Comment: 3 pages, 3 figure
Colossal dielectric constants in single-crystalline and ceramic CaCu3Ti4O12 investigated by broadband dielectric spectroscopy
In the present work the authors report results of broadband dielectric
spectroscopy on various samples of CaCu3Ti4O12, including so far only rarely
investigated single crystalline material. The measurements extend up to 1.3
GHz, covering more than nine frequency decades. We address the question of the
origin of the colossal dielectric constants and of the relaxational behavior in
this material, including the second relaxation reported in several recent
works. For this purpose, the dependence of the temperature- and
frequency-dependent dielectric properties on different tempering and surface
treatments of the samples and on ac-field amplitude are investigated. Broadband
spectra of a single crystal are analyzed by an equivalent circuit description,
assuming two highly resistive layers in series to the bulk. Good fits could be
achieved, including the second relaxation, which also shows up in single
crystals. The temperature- and frequency-dependent intrinsic conductivity of
CCTO is consistent with the Variable Range Hopping model. The second relaxation
is sensitive to surface treatment and, in contrast to the main relaxation, also
is strongly affected by the applied ac voltage. Concerning the origin of the
two insulating layers, we discuss a completely surface-related mechanism
assuming the formation of a metal-insulator diode and a combination of surface
and internal barriers.Comment: 9 pages, 7 figure
Metal-to-insulator transition and magnetic ordering in CaRu_{1-x}Cu_xO_3
CaRuO_3 is perovskite with an orthorhombic distortion and is believed to be
close to magnetic ordering. Magnetic studies of single crystal and
polycrystalline CaRu_{1-x}Cu_xO_3 (0\le x \le 15 at.%Cu) reveal that
spin-glass-like transition develops for x\le 7 at.%Cu and obtained value for
effective magnetic moment p_{eff}=3.55 mu_B for x=5 at.% Cu, single crystal,
indicates presence of Ru^{5+}. At higher Cu concentrations more complex
magnetic behaviors are observed. Electrical resistivity measured on
polycrystalline samples shows metal-to-insulator transition (MIT) at 51 K for
only 2 at.% Cu. Charge compensation, which is assumed to be present upon
Cu^{2+/3+} substitution, induces appearance of Ru^{5+} and/or creation of
oxygen vacancies in crystal structure. Since the observed changes in physical
properties are completely attributable to the charge compensation, they cannot
be related to behaviors of pure compound where no such mechanism is present.
This study provides the criterion for "good" chemical probes for studying
Ru-based perovskites.Comment: 12 pages, 7 figure
Enhancement of spin mixing conductance in La<sub>0.7</sub>Sr<sub>0.3</sub>MnO<sub>3</sub>/LaNiO<sub>3</sub>/SrRuO<sub>3</sub> heterostructures
Spin pumping and the effective spin-mixing conductance in heterostructures based on magnetic oxide trilayers composed of La0.7Sr0.3MnO3 (LSMO), LaNiO3 (LNO), and SrRuO3 (SRO) are investigated. The heterostructures serve as a model system for an estimation of the effective spin-mixing conductance at the different interfaces. The results show that by introducing a LNO interlayer between LSMO and SRO, the total effective spin-mixing conductance increases due to the much more favorable interface of LSMO/LNO with respect to the LSMO/SRO interface. Nevertheless, the spin current into the SRO does not decrease because of the spin diffusion length of λLNO ≈ 3.2nm in the LNO. This value is two times higher than that of SRO. The results show the potential of using oxide interfaces to tune the effective spin-mixing conductance in heterostructures and to bring novel functionalities into spintronics by implementing complex oxides
A model for bidirectional traffic of cytoskeletal motors
We introduce a stochastic lattice gas model including two particle species
and two parallel lanes. One lane with exclusion interaction and directed motion
and the other lane without exclusion and unbiased diffusion, mimicking a
micotubule filament and the surrounding solution. For a high binding affinity
to the filament, jam-like situations dominate the system's behaviour. The
fundamental process of position exchange of two particles is approximated. In
the case of a many-particle system, we were able to identify a regime in which
the system is rather homogenous presenting only small accumulations of
particles and a regime in which an important fraction of all particles
accumulates in the same cluster. Numerical data proposes that this cluster
formation will occur at all densities for large system sizes. Coupling of
several filaments leads to an enhanced cluster formation compared to the
uncoupled system, suggesting that efficient bidirectional transport on
one-dimensional filaments relies on long-ranged interactions and track
formation.Comment: 20 pages, 9 figure
- …