28 research outputs found

    Hallmarks of cancer-the new testament.

    Get PDF
    Diagnosis and treatment of disease demand a sound understanding of the underlying mechanisms, determining any Achilles' heel that can be targeted in effective therapies. Throughout history, this endeavour to decipher the origin and mechanism of transformation of a normal cell into cancer has led to various theories-from cancer as a curse to an understanding at the level of single-cell heterogeneity, meaning even among a single sub-type of cancer there are myriad molecular challenges to overcome. With increasing insight into cancer genetics and biology, the disease has become ever more complex to understand. The complexity of cancer as a disease was distilled into key traits by Hanahan and Weinberg in their seminal 'Hallmarks of Cancer' reviews. This lucid conceptualization of complex cancer biology is widely accepted and has helped advance cancer therapeutics by targeting the various hallmarks but, with the advancement in technologies, there is greater granularity in how we view cancer as a disease, and the additional understanding over the past decade requires us to revisit the hallmarks of cancer. Based on extensive study of the cancer research literature, we propose four novel hallmarks of cancer, namely, the ability of cells to regress from a specific specialized functional state, epigenetic changes that can affect gene expression, the role of microorganisms and neuronal signalling, to be included in the hallmark conceptualization along with evidence of various means to exploit them therapeutically

    A "hair-raising" history of alopecia areata

    Get PDF
    YesA 3500‐year‐old papyrus from ancient Egypt provides a list of treatments for many diseases including “bite hair loss,” most likely alopecia areata (AA). The treatment of AA remained largely unchanged for over 1500 years. In 30 CE, Celsus described AA presenting as scalp alopecia in spots or the “windings of a snake” and suggested treatment with caustic compounds and scarification. The first “modern” description of AA came in 1813, though treatment still largely employed caustic agents. From the mid‐19th century onwards, various hypotheses of AA development were put forward including infectious microbes (1843), nerve defects (1858), physical trauma and psychological stress (1881), focal inflammation (1891), diseased teeth (1902), toxins (1912) and endocrine disorders (1913). The 1950s brought new treatment developments with the first use of corticosteroid compounds (1952), and the first suggestion that AA was an autoimmune disease (1958). Research progressively shifted towards identifying hair follicle‐specific autoantibodies (1995). The potential role of lymphocytes in AA was made implicit with immunohistological studies (1980s). However, studies confirming their functional role were not published until the development of rodent models (1990s). Genetic studies, particularly genome‐wide association studies, have now come to the forefront and open up a new era of AA investigation (2000s). Today, AA research is actively focused on genetics, the microbiome, dietary modulators, the role of atopy, immune cell types in AA pathogenesis, primary antigenic targets, mechanisms by which immune cells influence hair growth, and of course the development of new treatments based on these discoveries.Alopecia UK

    Antibiotic control of tumor-colonizing Salmonella enterica serovar Typhimurium.

    Get PDF
    Systemic administration of Salmonella enterica serovar Typhimurium (S. typhimurium) into tumor-bearing mice results in preferential colonization of tumors and causes shrinkage and sometimes complete tumor clearance. However, in spite of these beneficial antitumor effects, the systemic administration of a bacterial pathogen raises serious safety concerns as well. Addressing those concerns, here, we demonstrate that tumor-colonizing Salmonella can be readily controlled by systemic administration of the antibiotic - ciprofloxacin. Treatment was most effective when started early postinfection. This was achieved at the expense of the efficacy of tumor therapy. In many of the mice treated in such a way, tumors re-grew again. Nevertheless, some mice were able to clear the tumor despite the start of antibiotic treatment only 24 h after the start of infection. Furthermore, we could demonstrate that such mice had elicited a specific antitumor immune response. Thus, S. typhimurium-mediated tumor therapy might be applied safely when combined with early antibiotic treatment. However, the therapeutic power of the bacteria needs to be enhanced in order to provide a more effective therapeutic tool
    corecore