68 research outputs found

    Next generation sequencing has lower sequence coverage and poorer SNP-detection capability in the regulatory regions

    Get PDF
    The rapid development of next generation sequencing (NGS) technology provides a new chance to extend the scale and resolution of genomic research. How to efficiently map millions of short reads to the reference genome and how to make accurate SNP calls are two major challenges in taking full advantage of NGS. In this article, we reviewed the current software tools for mapping and SNP calling, and evaluated their performance on samples from The Cancer Genome Atlas (TCGA) project. We found that BWA and Bowtie are better than the other alignment tools in comprehensive performance for Illumina platform, while NovoalignCS showed the best overall performance for SOLiD. Furthermore, we showed that next-generation sequencing platform has significantly lower coverage and poorer SNP-calling performance in the CpG islands, promoter and 5′-UTR regions of the genome. NGS experiments targeting for these regions should have higher sequencing depth than the normal genomic region

    Evaluation of next-generation sequencing software in mapping and assembly

    Get PDF
    Next-generation high-throughput DNA sequencing technologies have advanced progressively in sequence-based genomic research and novel biological applications with the promise of sequencing DNA at unprecedented speed. These new non-Sanger-based technologies feature several advantages when compared with traditional sequencing methods in terms of higher sequencing speed, lower per run cost and higher accuracy. However, reads from next-generation sequencing (NGS) platforms, such as 454/Roche, ABI/SOLiD and Illumina/Solexa, are usually short, thereby restricting the applications of NGS platforms in genome assembly and annotation. We presented an overview of the challenges that these novel technologies meet and particularly illustrated various bioinformatics attempts on mapping and assembly for problem solving. We then compared the performance of several programs in these two fields, and further provided advices on selecting suitable tools for specific biological applications.published_or_final_versio

    Epistasis between COMT and MTHFR in Maternal-Fetal Dyads Increases Risk for Preeclampsia

    Get PDF
    Preeclampsia is a leading cause of perinatal morbidity and mortality. This disorder is thought to be multifactorial in origin, with multiple genes, environmental and social factors, contributing to disease. One proposed mechanism is placental hypoxia-driven imbalances in angiogenic and anti-angiogenic factors, causing endothelial cell dysfunction. Catechol-O-methyltransferase (Comt)-deficient pregnant mice have a preeclampsia phenotype that is reversed by exogenous 2-methoxyestradiol (2-ME), an estrogen metabolite generated by COMT. 2-ME inhibits Hypoxia Inducible Factor 1α, a transcription factor mediating hypoxic responses. COMT has been shown to interact with methylenetetrahydrofolate reductase (MTHFR), which modulates the availability of S-adenosylmethionine (SAM), a COMT cofactor. Variations in MTHFR have been associated with preeclampsia. By accounting for allelic variation in both genes, the role of COMT has been clarified. COMT allelic variation is linked to enzyme activity and four single nucleotide polymorphisms (SNPs) (rs6269, rs4633, rs4680, and rs4818) form haplotypes that characterize COMT activity. We tested for association between COMT haplotypes and the MTHFR 677 C→T polymorphism and preeclampsia risk in 1103 Chilean maternal-fetal dyads. The maternal ACCG COMT haplotype was associated with reduced risk for preeclampsia (P = 0.004), and that risk increased linearly from low to high activity haplotypes (P = 0.003). In fetal samples, we found that the fetal ATCA COMT haplotype and the fetal MTHFR minor “T” allele interact to increase preeclampsia risk (p = 0.022). We found a higher than expected number of patients with preeclampsia with both the fetal risk alleles alone (P = 0.052) and the fetal risk alleles in combination with a maternal balancing allele (P<0.001). This non-random distribution was not observed in controls (P = 0.341 and P = 0.219, respectively). Our findings demonstrate a role for both maternal and fetal COMT in preeclampsia and highlight the importance of including allelic variation in MTHFR

    Phenotypic and measurement influences on heritability estimates in childhood ADHD

    Full text link
    corecore