1,453 research outputs found

    A Model for the Voltage Steps in the Breakdown of the Integer Quantum Hall Effect

    Full text link
    In samples used to maintain the US resistance standard the breakdown of the dissipationless integer quantum Hall effect occurs as a series of dissipative voltage steps. A mechanism for this type of breakdown is proposed, based on the generation of magneto-excitons when the quantum Hall fluid flows past an ionised impurity above a critical velocity. The calculated generation rate gives a voltage step height in good agreement with measurements on both electron and hole gases. We also compare this model to a hydrodynamic description of breakdown.Comment: 4 pages including 3 figure

    Cytogenetic studies of early myeloid progenitor compartments in Ph<SUP>1</SUP>- positive chronic myeloid leukemia. II. Long-term culture reveals the persistence of Ph<SUP>1</SUP>-negative progenitors in treated as well as newly diagnosed patients

    Get PDF
    We recently showed that long-term marrow cultures can be used to demonstrate the presence of Philadelphia (Ph1) negative progenitors in patients with newly diagnosed Ph1-positive chronic myeloid leukemia (CML). We now report results for 6 chronic phase patients studied 5-83 mo postdiagnosis and an additional 3 newly diagnosed patients. Marrow metaphases were exclusively Ph1-positive. Clonogenic assays revealed a minor population of Ph1-negative progenitors in 3 cases (1 treated, 2 untreated). Long-term marrow culture adherent layers contained Ph1- negative progenitors in 6 cases (3 treated, 3 untreated). Whenever this occurred, the Ph1-negative population had become the only one detectable within 3-4 wk, and this was always associated with a rapid decline of the Ph1-positive population. For 2 of the 3 cases where Ph1- negative progenitors were not detected, there was a similar rapid decline in the Ph1-positive population in culture. In the other case, Ph1-positive progenitors were maintained at levels typically seen in normal long-term marrow cultures. These results suggest that chromosomally normal stem cells may persist for a considerable period in the marrow of some, but perhaps not all, patients with CML, even in the face of maintenance chemotherapy. In addition, they provide new evidence of heterogeneity in this disease, as shown by the variable ability of Ph1-positive progenitor populations to be maintained in vitro

    Changes in the Proliferative Activity of Human Hematopoietic Stem Cells in NOD/SCID Mice and Enhancement of Their Transplantability after In Vivo Treatment with Cell Cycle Inhibitors

    Get PDF
    Human hematopoietic tissue contains rare stem cells with multilineage reconstituting ability demonstrable in receptive xenogeneic hosts. We now show that within 3 wk nonobese diabetic severe combined immunodeficiency (NOD/SCID) mice transplanted with human fetal liver cells regenerate near maximum levels of daughter human hematopoietic stem cells (HSCs) able to repopulate secondary NOD/SCID mice. At this time, most of the human HSCs (and other primitive progenitors) are actively proliferating as shown by their sensitivity to treatments that kill cycling cells selectively (e.g., exposure to high specific-activity [3H]thymidine in vitro or 5-fluorouracil in vivo). Interestingly, the proliferating human HSCs were rapidly forced into quiescence by in vivo administration of stromal-derived factor-1 (SDF-1) and this was accompanied by a marked increase in the numbers of human HSCs detectable. A similar result was obtained when transforming growth factor-β was injected, consistent with a reversible change in HSCs engrafting potential linked to changes in their cell cycle status. By 12 wk after transplant, most of the human HSCs had already entered Go and treatment with SDF-1 had no effect on their engrafting activity. These findings point to the existence of novel mechanisms by which inhibitors of HSC cycling can regulate the engrafting ability of human HSCs executing self-renewal divisions in vivo

    Extended twin study of alcohol use in Virginia and Australia

    Get PDF
    Drinking alcohol is a normal behavior in many societies, and prior studies have demonstrated it has both genetic and environmental sources of variation. Using two very large samples of twins and their first-degree relatives (Australia ≈ 20,000 individuals from 8,019 families; Virginia ≈ 23,000 from 6,042 families), we examine whether there are differences: (1) in the genetic and environmental factors that influence four interrelated drinking behaviors (quantity, frequency, age of initiation, and number of drinks in the last week), (2) between the twin-only design and the extended twin design, and (3) the Australian and Virginia samples. We find that while drinking behaviors are interrelated, there are substantial differences in the genetic and environmental architectures across phenotypes. Specifically, drinking quantity, frequency, and number of drinks in the past week have large broad genetic variance components, and smaller but significant environmental variance components, while age of onset is driven exclusively by environmental factors. Further, the twin-only design and the extended twin design come to similar conclusions regarding broad-sense heritability and environmental transmission, but the extended twin models provide a more nuanced perspective. Finally, we find a high level of similarity between the Australian and Virginian samples, especially for the genetic factors. The observed differences, when present, tend to be at the environmental level. Implications for the extended twin model and future directions are discussed

    Cross-cultural comparison of genetic and cultural transmission of smoking initiation using an extended twin kinship model

    Get PDF
    Background: Considerable evidence from twin and adoption studies indicates that genetic and shared environmental factors play a role in the initiation of smoking behavior. Although twin and adoption designs are powerful to detect genetic and environmental influences, they do not provide information on the processes of assortative mating and parent–offspring transmission and their contribution to the variability explained by genetic and/or environmental factors. Methods: We examined the role of genetic and environmental factors in individual differences for smoking initiation (SI) using an extended kinship design. This design allows the simultaneous testing of additive and non-additive genetic, shared and individual-specific environmental factors, as well as sex differences in the expression of genes and environment in the presence of assortative mating and combined genetic and cultural transmission, while also estimating the regression of the prevalence of SI on age. A dichotomous lifetime ‘ever’ smoking measure was obtained from twins and relatives in the ‘Virginia 30,000’ sample and the ‘Australian 25,000’. Results: Results demonstrate that both genetic and environmental factors play a significant role in the liability to SI. Major influences on individual differences appeared to be additive genetic and unique environmental effects, with smaller contributions from assortative mating, shared sibling environment, twin environment, cultural transmission, and resulting genotype-environment covariance. Age regression of the prevalence of SI was significant. The finding of negative cultural transmission without dominance led us to investigate more closely two possible mechanisms for the lower parent–offspring correlations compared to the sibling and DZ twin correlations in subsets of the data: (1) age × gene interaction, and (2) social homogamy. Neither of the mechanism provided a significantly better explanation of the data. Conclusions: This study showed significant heritability, partly due to assortment, and significant effects of primarily non-parental shared environment on liability to SI

    Interaction of marital status and genetic risk for symptoms of depression

    Get PDF

    Validation of magnetophonon spectroscopy as a tool for analyzing hot-electron effects in devices

    Get PDF
    It is shown that very high precision hot-electron magnetophonon experiments made on n+n−n+-GaAs sandwich device structures which are customized for magnetoresistance measurements can be very accurately modeled by a new Monte Carlo technique. The latter takes account of the Landau quantization and device architecture as well as material parameters. It is proposed that this combination of experiment and modeling yields a quantitative tool for the direct analysis of spatially localized very nonequilibrium electron distributions in small devices and low dimensional structures
    • …
    corecore