2 research outputs found

    Gauged vortices in a background

    Full text link
    We discuss the statistical mechanics of a gas of gauged vortices in the canonical formalism. At critical self-coupling, and for low temperatures, it has been argued that the configuration space for vortex dynamics in each topological class of the abelian Higgs model approximately truncates to a finite-dimensional moduli space with a Kaehler structure. For the case where the vortices live on a 2-sphere, we explain how localisation formulas on the moduli spaces can be used to compute explicitly the partition function of the vortex gas interacting with a background potential. The coefficients of this analytic function provide geometrical data about the Kaehler structures, the simplest of which being their symplectic volume (computed previously by Manton using an alternative argument). We use the partition function to deduce simple results on the thermodynamics of the vortex system; in particular, the average height on the sphere is computed and provides an interesting effective picture of the ground state.Comment: Final version: 22 pages, LaTeX, 1 eps figur

    On the curvature of vortex moduli spaces

    Get PDF
    We use algebraic topology to investigate local curvature properties of the moduli spaces of gauged vortices on a closed Riemann surface. After computing the homotopy type of the universal cover of the moduli spaces (which are symmetric powers of the surface), we prove that, for genus g>1, the holomorphic bisectional curvature of the vortex metrics cannot always be nonnegative in the multivortex case, and this property extends to all Kaehler metrics on certain symmetric powers. Our result rules out an established and natural conjecture on the geometry of the moduli spaces.Comment: 25 pages; final version, to appear in Math.
    corecore