579 research outputs found
Scientific Ignorance and Reliable Patterns of Evidence in Toxic Tort Causation: Is There a Need for Liability Reform?
As a first step to preserving the central aims of tort law, courts will need to recognize the wide variety of respectable, reliable patterns of evidence on which scientists themselves rely for drawing inferences about the toxicity of substances. Courts may also need to take further steps to address the woeful ignorance about the chemical universe. This may necessitate changes in the liability rules
Scientific Ignorance and Reliable Patterns of Evidence in Toxic Tort Causation: Is There a Need for Liability Reform?
As a first step to preserving the central aims of tort law, courts will need to recognize the wide variety of respectable, reliable patterns of evidence on which scientists themselves rely for drawing inferences about the toxicity of substances. Courts may also need to take further steps to address the woeful ignorance about the chemical universe. This may necessitate changes in the liability rules
An Arabidopsis mutant disrupted in valine catabolism is also compromised in peroxisomal fatty acid β-oxidation
AbstractCharacterisation of the Arabidopsis dbr5 mutant, which was isolated on the basis of 2,4-dichlorophenoxybutyric acid (2,4-DB) resistance, revealed that it is disrupted in the CHY1 gene. CHY1 encodes a peroxisomal protein that is 43% identical to the mammalian β-hydroxyisobutryl-CoA hydrolase of valine catabolism. We show that 2,4-DB resistance and the associated sucrose dependent seedling growth are due to a large activity decrease of 3-ketoacyl-CoA thiolase, which is involved in peroxisomal fatty acid β-oxidation. 14C-feeding studies demonstrate that dbr5 and chy1 seedlings are reduced in valine catabolism. These data support the hypothesis that CHY1 plays a key role in peroxisomal valine catabolism and that disruption of this enzyme results in accumulation of a toxic intermediate, methacrylyl-CoA, that inhibits 3-ketoacyl-CoA thiolase activity and thus blocks peroxisomal β-oxidation. We also show that CHY1 is repressed in seedlings grown on sugars, which suggests that branched chain amino acid catabolism is transcriptionally regulated by nutritional status
Peroxidase-dependent metabolism of benzene's phenolic metabolites and its potential role in benzene toxicity and carcinogenicity.
The metabolism of two of benzene's phenolic metabolites, phenol and hydroquinone, by peroxidase enzymes has been studied in detail. Studies employing horseradish peroxidase and human myeloperoxidase have shown that in the presence of hydrogen peroxide phenol is converted to 4,4'-diphenoquinone and other covalent binding metabolites, whereas hydroquinone is converted solely to 1,4-benzoquinone. Surprisingly, phenol stimulates the latter conversion rather than inhibiting it, an effect that may play a role in the in vivo myelotoxicity of benzene. Indeed, repeated coadministration of phenol and hydroquinone to B6C3F1 mice results in a dramatic and significant decrease in bone marrow cellularity similar to that observed following benzene exposure. A mechanism of benzene-induced myelotoxicity is therefore proposed in which the accumulation and interaction of phenol and hydroquinone in the bone marrow and the peroxidase-dependent formation of 1,4-benzoquinone are important components. This mechanism may also be responsible, at least in part, for benzene's genotoxic effects, as 1,4-benzoquinone has been shown to damage DNA and is shown here to induce multiple micronuclei in human lymphocytes. Secondary activation of benzene's phenol metabolites in the bone marrow may therefore play an important role in benzene's myelotoxic and carcinogenic effects
A causal inference and Bayesian optimisation framework for modelling multi-trait relationships—Proof-of-concept using Brassica napus seed yield under controlled conditions
The improvement of crop yield is a major breeding target and there is a long history of research that has focussed on unravelling the mechanisms and processes that contribute to yield. Quantitative prediction of the interplay between morphological traits, and the effects of these trait-trait relationships on seed production remains, however, a challenge. Consequently, the extent to which crop varieties optimise their morphology for a given environment is largely unknown. This work presents a new combination of existing methodologies by framing crop breeding as an optimisation problem and evaluates the extent to which existing varieties exhibit optimal morphologies under the test conditions. In this proof-of-concept study using spring and winter oilseed rape plants grown under greenhouse conditions, we employ causal inference to model the hierarchically structured effects of 27 morphological yield traits on each other. We perform Bayesian optimisation of seed yield, to identify and quantify the morphologies of ideotype plants, which are expected to be higher yielding than the varieties in the studied panels. Under the tested growth conditions, we find that existing spring varieties occupy the optimal regions of trait-space, but that potentially high yielding strategies are unexplored in extant winter varieties. The same approach can be used to evaluate trait (morphology) space for any environment
ACYL-ACYL CARRIER PROTEIN DESATURASE2 and 3 are responsible for making omega-7 fatty acids in the Arabidopsis aleurone
Omega-7 monounsaturated fatty acids (ω-7s) are specifically enriched in the aleurone of Arabidopsis (Arabidopsis thaliana) seeds. We found significant natural variation in seed ω-7 content and used a Multiparent Advanced Generation Inter-Cross population to fine-map a major quantitative trait loci to a region containing ACYL-ACYL CARRIER PROTEIN DESATURASE1 (AAD1) and AAD3. We found that AAD3 expression is localized to the aleurone where mutants show an approximately 50% reduction in ω-7 content. By contrast, AAD1 is localized to the embryo where mutants show a small reduction in ω-9 content. Enzymatic analysis has previously shown that AAD family members possess both stearoyl- and palmitoyl-ACP Δ9 desaturase activity, including the predominant isoform SUPPRESSOR OF SALICYLIC ACID INSENSITIVE2. However, aad3 ssi2 aleurone contained the same amount of ω-7s as aad3. Within the AAD family, AAD3 shares the highest degree of sequence similarity with AAD2 and AAD4. Mutant analysis showed that AAD2 also contributes to ω-7 production in the aleurone, and aad3 aad2 exhibits an approximately 85% reduction in ω-7s. Mutant analysis also showed that FATTY ACID ELONGASE1 is required for the production of very long chain ω-7s in the aleurone. Together, these data provide genetic evidence that the ω-7 pathway proceeds via Δ9 desaturation of palmitoyl-ACP followed by elongation of the product. Interestingly, significant variation was also identified in the ω-7 content of Brassica napus aleurone, with the highest level detected being approximately 47% of total fatty acids
The SUGAR-DEPENDENT1 Lipase Limits Triacylglycerol Accumulation in Vegetative Tissues of Arabidopsis
Laboratory phenomics predicts field performance and identifies superior indica haplotypes for early seedling vigour in dry direct-seeded rice
Seedling vigour is an important agronomic trait and is gaining attention in Asian rice (Oryza sativa) as cultivation practices shift from transplanting to forms of direct seeding. To understand the genetic control of rice seedling vigour in dry direct seeded (aerobic) conditions we measured multiple seedling traits in 684 accessions from the 3000 Rice Genomes (3K-RG) population in both the laboratory and field at three planting depths. Our data show that phenotyping of mesocotyl length in laboratory conditions is a good predictor of field performance. By performing a genome wide association study, we found that the main QTL for mesocotyl length, percentage seedling emergence and shoot biomass are co-located on the short arm of chromosome 7. We show that haplotypes in the indica subgroup from this region can be used to predict the seedling vigour of 3K-RG accessions. The selected accessions may serve as potential donors in genomics-assisted breeding programs
- …