34 research outputs found

    2007 National Lawyer’s Convention The Federalist Society \u3cem\u3eand its\u3c/em\u3e Federalism and Separation of Powers Practice Groups \u3cem\u3epresent a panel debate on\u3c/em\u3e Federalism: Religion, Early America and the Fourteenth Amendment

    Get PDF
    Transcript of the Federalist Society and its Federalism and Separation of Powers Practice Groups panel debate at the 2007 National Lawyers Convention including panelists Dean John Eastman of Chapman University School of Law, Professor Marci Hamilton of the Benjamin N. Cardozo School of Law, and moderated by Hon. William H. Pryor Jr. of the U.S. Court of Appeals, Eleventh Circuit

    Federalism: Deference Meets Delegation: Which Is the Most Dangerous Branch

    Get PDF
    The following is a transcript of a 2016 Federalist Society panel entitled Federalism: Deference Meets Delegation: Which is the Most Dangerous Branch? The panel originally occurred on November 12, 2015, during the National Lawyers Convention in Washington, D.C. The panelists were: C. Boyden Gray, Attorney at Boyden, Gray and Associates and former U.S. Ambassador to the European Union; David B. Rivkin Jr., Partner at BakerHostetler; Neal K. Katyal, Attorney at Hogan Lovells and former acting U.S. Solicitor General; and John C. Eastman, Henry Salvatori Professor of Law & Community Service at Chapman University School of Law. The moderator was the Honorable Judge Brett Kavanaugh of the U.S. Court of Appeals, D.C. Circuit

    Atmospheric retrieval of exoplanets

    Get PDF
    Exoplanetary atmospheric retrieval refers to the inference of atmospheric properties of an exoplanet given an observed spectrum. The atmospheric properties include the chemical compositions, temperature profiles, clouds/hazes, and energy circulation. These properties, in turn, can provide key insights into the atmospheric physicochemical processes of exoplanets as well as their formation mechanisms. Major advancements in atmospheric retrieval have been made in the last decade, thanks to a combination of state-of-the-art spectroscopic observations and advanced atmospheric modeling and statistical inference methods. These developments have already resulted in key constraints on the atmospheric H2O abundances, temperature profiles, and other properties for several exoplanets. Upcoming facilities such as the JWST will further advance this area. The present chapter is a pedagogical review of this exciting frontier of exoplanetary science. The principles of atmospheric retrievals of exoplanets are discussed in detail, including parametric models and statistical inference methods, along with a review of key results in the field. Some of the main challenges in retrievals with current observations are discussed along with new directions and the future landscape

    TOI-257b (HD 19916b): a warm sub-saturn orbiting an evolved F-type star

    Get PDF
    ABSTRACT We report the discovery of a warm sub-Saturn, TOI-257b (HD 19916b), based on data from NASA’s Transiting Exoplanet Survey Satellite (TESS). The transit signal was detected by TESS and confirmed to be of planetary origin based on radial velocity observations. An analysis of the TESS photometry, the Minerva-Australis, FEROS, and HARPS radial velocities, and the asteroseismic data of the stellar oscillations reveals that TOI-257b has a mass of MP = 0.138 ± 0.023 MJ\rm {M_J} (43.9 ± 7.3 M\, M_{\rm \oplus}), a radius of RP = 0.639 ± 0.013 RJ\rm {R_J} (7.16 ± 0.15 R\, \mathrm{ R}_{\rm \oplus}), bulk density of 0.650.11+0.120.65^{+0.12}_{-0.11} (cgs), and period 18.388180.00084+0.0008518.38818^{+0.00085}_{-0.00084} days\rm {days}. TOI-257b orbits a bright (V = 7.612 mag) somewhat evolved late F-type star with M* = 1.390 ± 0.046 Msun\rm {M_{sun}}, R* = 1.888 ± 0.033 Rsun\rm {R_{sun}}, Teff = 6075 ± 90 K\rm {K}, and vsin i = 11.3 ± 0.5 km s−1. Additionally, we find hints for a second non-transiting sub-Saturn mass planet on a ∼71 day orbit using the radial velocity data. This system joins the ranks of a small number of exoplanet host stars (∼100) that have been characterized with asteroseismology. Warm sub-Saturns are rare in the known sample of exoplanets, and thus the discovery of TOI-257b is important in the context of future work studying the formation and migration history of similar planetary systems

    Modeling the risk of spread and establishment for Asian longhorned beetle ( Anoplophora glabripennis

    No full text
    Land managers responsible for invasive species removal in the USA require tools to prevent the Asian longhorned beetle (Anoplophora glabripennis) (ALB) from decimating the maple-dominant hardwood forests of Massachusetts and New England. Species distribution models (SDMs) and spread models have been applied individually to predict the invasion distribution and rate of spread, but the combination of both models can increase the accuracy of predictions of species spread over time when habitat suitability is heterogeneous across landscapes. First, a SDM was fit to 2008 ALB presence-only locations. Then, a stratified spread model was generated to measure the probability of spread due to natural and human causes. Finally, the SDM and spread models were combined to evaluate the risk of ALB spread in Central Massachusetts in 2008–2009. The SDM predicted many urban locations in Central Massachusetts as having suitable environments for species establishment. The combined model shows the greatest risk of spread and establishment in suitable locations immediately surrounding the epicentre of the ALB outbreak in Northern Worcester with lower risk areas in suitable locations only accessible through long-range dispersal from access to human transportation networks. The risk map achieved an accuracy of 67% using 2009 ALB locations for model validation. This model framework can effectively provide risk managers with valuable information concerning the timing and spatial extent of spread/establishment risk of ALB and potential strategies needed for effective future risk management efforts
    corecore