4 research outputs found

    DBI Inflation using a One-Parameter Family of Throat Geometries

    Full text link
    We demonstrate the possibility of examining cosmological signatures in the DBI inflation setup using the BGMPZ solution, a one-parameter family of geometries for the warped throat which interpolate between the Maldacena-Nunez and Klebanov-Strassler solutions. The warp factor is determined numerically and subsequently used to calculate cosmological observables including the scalar and tensor spectral indices, for a sample point in the parameter space. As one moves away from the KS solution for the throat the warp factor is qualitatively different, which leads to a significant change for the observables, but also generically increases the non-Gaussianity of the models. We argue that the different models can potentially be differentiated by current and future experiments.Comment: 17 pages, 10 figures; v2: section 4 expanded, references added; v3: typos fixe

    Duality Cascade in Brane Inflation

    Full text link
    We show that brane inflation is very sensitive to tiny sharp features in extra dimensions, including those in the potential and in the warp factor. This can show up as observational signatures in the power spectrum and/or non-Gaussianities of the cosmic microwave background radiation (CMBR). One general example of such sharp features is a succession of small steps in a warped throat, caused by Seiberg duality cascade using gauge/gravity duality. We study the cosmological observational consequences of these steps in brane inflation. Since the steps come in a series, the prediction of other steps and their properties can be tested by future data and analysis. It is also possible that the steps are too close to be resolved in the power spectrum, in which case they may show up only in the non-Gaussianity of the CMB temperature fluctuations and/or EE polarization. We study two cases. In the slow-roll scenario where steps appear in the inflaton potential, the sensitivity of brane inflation to the height and width of the steps is increased by several orders of magnitude comparing to that in previously studied large field models. In the IR DBI scenario where steps appear in the warp factor, we find that the glitches in the power spectrum caused by these sharp features are generally small or even unobservable, but associated distinctive non-Gaussianity can be large. Together with its large negative running of the power spectrum index, this scenario clearly illustrates how rich and different a brane inflationary scenario can be when compared to generic slow-roll inflation. Such distinctive stringy features may provide a powerful probe of superstring theory.Comment: Corrections in Eq.(5.47), Eq (5.48), Eq(5.49) and Fig

    Reconstructing Single Field Inflationary Actions From CMBR Data

    Full text link
    This paper describes a general program for deriving the action of single field inflation models with nonstandard kinetic energy terms using CMBR power spectrum data. This method assumes that an action depends on a set of undetermined functions, each of which is a function of either the inflaton wave function or its time derivative. The scalar, tensor and non-gaussianity of the curvature perturbation spectrum are used to derive a set of reconstruction equations whose solution set can specify up to three of the undetermined functions. The method is then used to find the undetermined functions in various types of actions assuming power law type scalar and tensor spectra. In actions that contain only two unknown functions, the third reconstruction equation implies a consistency relation between the non-gaussianty, sound speed and slow roll parameters. In particular we focus on reconstructing a generalized DBI action with an unknown potential and warp factor. We find that for realistic scalar and tensor spectra, the reconstructed warp factor and potential are very similar to the theoretically derived result. Furthermore, physical consistency of the reconstructed warp factor and potential imposes strict constraints on the scalar and tensor spectral indices.Comment: 33 pages, 3 figures: v3 - References adde
    corecore