1 research outputs found

    Not So Fast Kepler-1513: A Perturbing Planetary Interloper in the Exomoon Corridor

    Full text link
    Transit Timing Variations (TTVs) can be induced by a range of physical phenomena, including planet-planet interactions, planet-moon interactions, and stellar activity. Recent work has shown that roughly half of moons would induce fast TTVs with a short period in the range of two-to-four orbits of its host planet around the star. An investigation of the Kepler TTV data in this period range identified one primary target of interest, Kepler-1513 b. Kepler-1513 b is a 8.05−0.40+0.588.05^{+0.58}_{-0.40} R⊕R_\oplus planet orbiting a late G-type dwarf at 0.53−0.03+0.040.53^{+0.04}_{-0.03} AU. Using Kepler photometry, this initial analysis showed that Kepler-1513 b's TTVs were consistent with a moon. Here, we report photometric observations of two additional transits nearly a decade after the last Kepler transit using both ground-based observations and space-based photometry with TESS. These new transit observations introduce a previously undetected long period TTV, in addition to the original short period TTV signal. Using the complete transit dataset, we investigate whether a non-transiting planet, a moon, or stellar activity could induce the observed TTVs. We find that only a non-transiting perturbing planet can reproduce the observed TTVs. We additionally perform transit origami on the Kepler photometry, which independently applies pressure against a moon hypothesis. Specifically, we find that Kepler-1513 b's TTVs are consistent with an exterior non-transiting ∼\simSaturn mass planet, Kepler-1513 c, on a wide orbit, ∼\sim5%\% outside a 5:1 period ratio with Kepler-1513 b. This example introduces a previously unidentified cause for planetary interlopers in the exomoon corridor, namely an insufficient baseline of observations.Comment: 20 pages, 13 figures. Accepted to MNRAS. Code available at https://github.com/dyahalomi/Kepler151
    corecore