148 research outputs found

    Paxillin Is Tyrosine-phosphorylated by and Preferentially Associates with the Calcium-dependent Tyrosine Kinase in Rat Liver Epithelial Cells

    Get PDF
    We and others have recently cloned a non-receptor, calcium-dependent tyrosine kinase (CADTK; also known as PYK2, CAKbeta, and RAFTK) that shares both overall domain structure and 45% amino acid identity with p125(FAK). We have studied the signaling, activation, and potential function of these related enzymes in GN4 rat liver epithelial cells that express CADTK and p125(FAK) at roughly similar levels. p125(FAK) is nearly fully tyrosine-phosphorylated in resting GN4 cells. In contrast, while CADTK is not tyrosine-autophosphorylated in untreated cells, angiotensin II increases CADTK Tyr(P) by 5-10-fold. With regard to signaling, CADTK activation is correlated with stimulation of c-Jun N-terminal kinase and p70(S6K) pathways but not with the stimulation of mitogen-activated protein kinase or p90(RSK). In this report we assessed the contribution of CADTK and p125(FAK) to tyrosine phosphorylation of focal contact proteins. In adherent GN4 cells, the constitutive activity of p125(FAK) was correlated with basal paxillin, tensin, and p130(CAS) tyrosine phosphorylation. A rapid increase in the tyrosine phosphorylation of each protein was detected after treatment with angiotensin II or other agonists that stimulate CADTK; the prolonged 3-4-fold increase in paxillin tyrosine phosphorylation was the most substantial change. In the WB cell line that expresses 3-fold less CADTK than GN4 cell line agonist-dependent paxillin tyrosine phosphorylation is similarly reduced. Immunoprecipitation of CADTK from GN4 cells revealed CADTK. paxillin complexes that persisted in 500 mM NaCl but not in 0.1% SDS cell lysis buffer. The complexes were largely independent of the tyrosine phosphorylation state of either protein. Surprisingly, we did not detect p125(FAK).paxillin complexes in immunoprecipitates using either of two p125(FAK) antibodies. When CADTK and p125(FAK) were transiently overexpressed in 293(T) cells, both enzymes associated with paxillin, but the avidity of CADTK appeared to be greater. In addition, in transfected 293(T) cells, complexes between CADTK and another potential substrate, p130(CAS), were detected. In summary, in GN4 rat liver epithelial cells stimulation of CADTK was highly correlated with paxillin tyrosine phosphorylation; in addition, CADTK but not p125(FAK) was complexed to paxillin at detectable levels. This suggests that agonist-dependent cytoskeletal changes in epithelial cells might proceed, in part, by CADTK-dependent mechanisms

    An SH2 Domain-dependent, Phosphotyrosine-independent Interaction between Vav1 and the Mer Receptor Tyrosine Kinase: A MECHANISM FOR LOCALIZING GUANINE NUCLEOTIDE-EXCHANGE FACTOR ACTION

    Get PDF
    Mer belongs to the Mer/Axl/Tyro3 receptor tyrosine kinase family, which regulates immune homeostasis in part by triggering monocyte ingestion of apoptotic cells. Mutations in Mer can also cause retinitis pigmentosa, again due to defective phagocytosis of apoptotic material. Although, some functional aspects of Mer have been deciphered, how receptor activation lead to the physiological consequences is not understood. By using yeast two-hybrid assays, we identified the carboxyl-terminal region of the guanine nucleotide-exchange factor (GEF) Vav1 as a Mer-binding partner. Unlike similar (related) receptors, Mer interacted with Vav1 constitutively and independently of phosphotyrosine, yet the site of binding localized to the Vav1 SH2 domain. Mer activation resulted in tyrosine phosphorylation of Vav1 and release from Mer, whereas Vav1 was neither phosphorylated nor released from kinase-dead Mer. Mutation of the Vav1 SH2 domain phosphotyrosine coordinating Arg-696 did not alter Mer/Vav1 constitutive binding or Vav1 tyrosine phosphorylation but did retard Vav1 release from autophosphorylated Mer. Ligand-dependent activation of Mer in human monocytes led to Vav1 release and stimulated GDP replacement by GTP on RhoA family members. This unusual constitutive, SH2 domain-dependent, but phosphotyrosine-independent, interaction and its regulated local release and subsequent activation of Rac1, Cdc42, and RhoA may explain how Mer coordinates precise cytoskeletal changes governing the ingestion of apoptotic material by macrophages and pigmented retinal epithelial cells

    Epithelial cell-directed efferocytosis in the post-partum mammary gland is necessary for tissue homeostasis and future lactation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mammary glands harbor a profound burden of apoptotic cells (ACs) during post-lactational involution, but little is known regarding mechanisms by which ACs are cleared from the mammary gland, or consequences if this process is interrupted. We investigated AC clearance, also termed efferocytosis, during post-lactational remodeling, using mice deficient for MerTK, Axl, and Tyro3, three related receptor tyrosine kinases (RTKs) regulating macrophage-mediated efferocytosis in monocytes. MerTK expression, apoptosis and the accumulation of apoptotic debris were examined in histological sections of MerTK-deficient, Axl/Tyro3-deficient, and wild-type mammary glands harvested at specific time points during lactation and synchronized involution. The ability of primary mammary epithelial cells (MECs) to engulf ACs was assessed in culture. Transplant of MerTK-deficient mammary epithelium into cleared WT mammary fat pads was used to assess the contribution of WT mammary macrophages to post-lactational efferocytosis.</p> <p>Results</p> <p>ACs induced MerTK expression in MECs, resulting in elevated MerTK levels at the earliest stages of involution. Loss of MerTK resulted in AC accumulation in post-lactational MerTK-deficient mammary glands, but not in Axl and Tyro3-deficient mammary glands. Increased vascularization, fibrosis, and epithelial hyperproliferation were observed in MerTK-deficient mammary glands through at least 60 days post-weaning, due to failed efferocytosis after lactation, but did not manifest in nulliparous mice. WT host-derived macrophages failed to rescue efferocytosis in transplanted MerTK-deficient mammary epithelium.</p> <p>Conclusion</p> <p>Efferocytosis by MECs through MerTK is crucial for mammary gland homeostasis and function during the post-lactational period. Efferocytosis by MECs thus limits pathologic consequences associated with the apoptotic load following lactation.</p

    The Epstein-Barr virus latent membrane protein 1 induces expression of the epidermal growth factor receptor.

    Get PDF
    The Epstein-Barr virus (EBV)-encoded LMP1 protein is an important component of the process of transformation by EBV. LMP1 is essential for transformation of B lymphocytes, most likely because of its profound effects on cellular gene expression. Although LMP1 is expressed in the majority of nasopharyngeal carcinoma (NPC) tumors, the effect of LMP1 on cellular gene expression and its contribution to the development of malignancy in epithelial cells is largely unknown. In this study the effects of LMP1 on the expression and tyrosine kinase activity of the epidermal growth factor receptor (EGFR) were investigated in C33A human epithelial cells. Stable or transient expression of LMP1 in C33A cells increased expression of the EGFR at both the protein and mRNA levels. In contrast, expression of the EGFR was not induced by LMP1 in EBV-infected B lymphocytes. Stimulation of LMP1-expressing C33A cells with epidermal growth factor (EGF) caused rapid tyrosine phosphorylation of the EGFR (pp170) as well as several other proteins, including pp120, pp85, pp75, and pp55, indicating that the EGFR induced by LMP1 is functional. LMP1 also induced expression of the A20 gene in C33A epithelial cells. In C33A cells, LMP1 expression increased the proliferative response to EGF, as LMP1-expressing C33A cells continued to increase in number when plated in serum-free media supplemented with EGF, while the neo control cells exhibited very low levels of viability and did not proliferate. Immunoblot analysis of protein extracts from nude mouse-passaged NPC tumors also demonstrated that the EGFR is overexpressed in primary NPC tumors as well as those passaged in nude mice. This study suggests that the alteration in the growth patterns of C33A cells expressing LMP1 is a result of increased proliferative signals due to enhanced EGFR expression, as well as protection from cell death due to LMP1-induced A20 expression. The induction of EGFR and A20 by LMP1 may be an important component of EBV infection in epithelial cells and could contribute to the development of epithelial malignancies such as NPC

    A Calcium-dependent Tyrosine Kinase Splice Variant in Human Monocytes: ACTIVATION BY A TWO-STAGE PROCESS INVOLVING ADHERENCE AND A SUBSEQUENT INTRACELLULAR SIGNAL

    Get PDF
    Freshly isolated human monocytes do not express p125(FAK) but upon adherence to substrata activate the highly related calcium-dependent tyrosine kinase (CADTK), also known as Pyk2, CAKbeta, RAFTK, and FAK2. The monocyte CADTK was 5 kDa smaller than protein from epithelial cells; isolation and sequencing of the monocyte CADTK cDNA revealed a predicted 42-amino acid deletion between the two proline-rich domains of the enzyme. The nucleic acid sequence suggests that the deletion is caused by alternative RNA splicing. This species was also found in T and B lymphocytes and appears to be the predominant form of cytoskeletal associated tyrosine kinase in non-neoplastic, circulating, hematopoietic cells. CADTK was not activated when monocytes maintained in suspension were treated with agents that produce an intracellular calcium (thapsigargin) or protein kinase C (phorbol 12-myristate 13-acetate) signal including a chemokine, RANTES, that binds to the HIV co-receptor, CCK5. In contrast, monocyte adherence to tissue culture plastic-stimulated CADTK tyrosine phosphorylation, a process that was enhanced by thapsigargin, phorbol 12-myristate 13-acetate, and RANTES but that was completely blocked by preincubation with cytochalasin D. When compared with plastic, adherence to fibronectin- or collagen-coated surfaces produced only minimal CADTK activation but permitted significant stimulation by added thapsigargin. These data suggest that in a cell type that lacks p125(FAK), CADTK plays an early role in post-adherence signaling. Its activation involves two stages, cytoskeletal engagement, which is permissive, and co-stimulatory signals (calcium or protein kinase C) generated by extensive cell surface engagement, agonists, or inflammatory chemokines

    Taking aim at Mer and Axl receptor tyrosine kinases as novel therapeutic targets in solid tumors

    Get PDF
    Axl and/or Mer expression correlates with poor prognosis in several cancers. Until recently, the specific role of these receptor tyrosine kinases (RTKs) in the development and progression of cancer remained unexplained. Studies demonstrating that Axl and Mer contribute to mechanisms of cell survival, migration, invasion, metastasis, and chemosensitivity justify further investigation of Axl and Mer as novel therapeutic targets in cancer

    ErbB4/HER4: Role in Mammary Gland Development, Differentiation and Growth Inhibition

    Get PDF
    The ErbB receptor tyrosine kinase family has often been associated with increased growth of breast epithelial cells, as well as malignant transformation and progression. In contrast, ErbB4/HER4 exhibits unique attributes from a two step proteolytic cleavage which releases an 80 kilodalton, nuclear localizing, tyrosine kinase to a signal transduction mechanism that slows growth and stimulates differentiation of breast cells. This review provides an overview of ErbB4/HER4 in growth and differentiation of the mammary epithelium, including its physiologic role in development, the contrasting growth inhibition/tumor suppression and growth acceleration of distinct ErbB4/HER4 isoforms and a description of the unique cell cycle regulated pattern of nuclear HER4 ubiquitination and destruction

    TAM receptors are dispensable in the phagocytosis and killing of bacteria

    Get PDF
    Many receptors that are employed for the engulfment of apoptotic cells are also used for the recognition and phagocytosis of bacteria. Tyro3, Axl, and Mertk (TAM) are important in the phagocytosis of apoptotic cells by macrophages. Animals lacking these receptors are hypersensitive to bacterial products. In this report, we examine whether the TAM receptors are involved in the phagocytosis of bacteria. We found that macrophages lacking Mertk, Axl, Tyro3 or all three receptors were equally efficient in the phagocytosis of Gram-negative E. coli. Similarly, the phagocytosis of E. coli and Gram-positive S. aureus bioparticles by macrophages lacking TAM receptors was equal to wild-type. In addition, we found that Mertk did not play a role in killing of extracellular E. coli or the replication status of intracellular F. tularensis. Thus, while TAM receptors may regulate signal transduction to bacterial components, they are not essential for the phagocytosis and killing of bacteria

    An Intracellular Calcium Signal Activates p70 but Not p90 Ribosomal S6 Kinase in Liver Epithelial Cells

    Get PDF
    In the rat liver epithelial cell lines GN4 and WB, angiotensin II (Ang II) activates the Gq class of regulatory G-proteins, increasing intracellular calcium, protein kinase C activity, and protein tyrosine phosphorylation. We compared the ability of Ang II and other compounds that increase intracellular calcium (i.e. the calcium ionophore A23187 and thapsigargin) or protein kinase C activity (the phorbol ester 12-O-tetradecanoylphorbol-13-acetate) to activate p70 ribosomal S6 kinase (p70(S6K)) and p90 ribosomal S6 kinase (p90(RSK)). In GN4 cells, increasing intracellular calcium stimulated p70(S6K) activity in a rapamycin- and wortmannin- sensitive manner, but did not affect p90(RSK) activity. In contrast, 12-O-tetradecanoylphorbol-13-acetate strongly activated p90(RSK) but only weakly stimulated p70(S6K). The ability of calcium to activate p70(S6K) was confirmed by blocking the A23187-dependent activation through chelation of extracellular calcium with EGTA; the effect of thapsigargin was inhibited by the cell permeant chelator bis-(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl ester (BAPTA-AM). Similarly, BAPTA-AM prevented the activation of p70(S6K) by Ang II, suggesting that this signal was largely calcium-dependent. In contrast, the Ang II-dependent activation of mitogen-activated protein kinase and p90(RSK) was not inhibited but was enhanced by BAPTA-AM. These results show that in GN4 cells, Ang II selectively activates p70(S6K) through effects on calcium, p90(RSK) through effects on protein kinase C. The activation of p70(S6K) by calcium stimuli or Ang II was independent of calmodulin but correlated well with the activation of the recently identified, nonreceptor calcium-dependent tyrosine kinase (CADTK)/PYK-2. Both calcium- and Ang II-dependent activation of p70(S6K) were attenuated by the tyrosine kinase inhibitor genistein, and activation of p70(S6K) was higher in GN4 than WB cells, correlating with the increased expression and activation of CADTK/PYK-2 in GN4 cells. In summary, these results demonstrate that intracellular calcium selectively activates p70(S6K) in GN4 cells, consistent with increased CADTK/PYK-2 signaling in these cells

    Interactions between Two Cytoskeleton-associated Tyrosine Kinases: Calcium-dependent Tyrosine Kinase and Focal Adhesion Tyrosine Kinase

    Get PDF
    The calcium-dependent tyrosine kinase (CADTK), also known as Pyk2/RAFTK/CAKbeta/FAK2, is a cytoskeleton-associated tyrosine kinase. We compared CADTK regulation with that of the highly homologous focal adhesion tyrosine kinase (FAK). First, we generated site-specific CADTK mutants. Mutation of Tyr402 eliminated autophosphorylation and significantly decreased kinase activity. Mutation of Tyr881, a putative Src kinase phosphorylation site predicted to bind Grb2, had little effect on CADTK regulation. Src family tyrosine kinases resulted in CADTK tyrosine phosphorylation even when co-expressed with the Tyr402/Tyr881 double mutant, suggesting that Src/Fyn etc. phosphorylate additional tyrosine residues. Interestingly, CADTK tyrosine-phosphorylated FAK when both were transiently expressed, but FAK did not phosphorylate CADTK. Biochemical experiments confirmed direct CADTK phosphorylation of FAK. This phosphorylation utilized tyrosine residues other than Tyr397, Tyr925, or Tyr576/Tyr577, suggesting that new SH2-binding sites might be created by CADTK-dependent FAK phosphorylation. Last, expression of the CADTK carboxyl terminus (CRNK) abolished CADTK but not FAK autophosphorylation. In contrast, FAK carboxyl terminus overexpression inhibited both FAK and CADTK autophosphorylation, suggesting that a FAK-dependent cytoskeletal function may be necessary for CADTK activation. Thus, CADTK and FAK, which both bind to some, but not necessarily the same, cytoskeletal elements, may be involved in coordinate regulation of cytoskeletal structure and signaling
    corecore