1,906 research outputs found
Viscous instabilities in flowing foams: A Cellular Potts Model approach
The Cellular Potts Model (CPM) succesfully simulates drainage and shear in
foams. Here we use the CPM to investigate instabilities due to the flow of a
single large bubble in a dry, monodisperse two-dimensional flowing foam. As in
experiments in a Hele-Shaw cell, above a threshold velocity the large bubble
moves faster than the mean flow. Our simulations reproduce analytical and
experimental predictions for the velocity threshold and the relative velocity
of the large bubble, demonstrating the utility of the CPM in foam rheology
studies.Comment: 10 pages, 3 figures. Replaced with revised version accepted for
publication in JSTA
Anomalous temperature dependence of surface tension and capillary waves at liquid gallium
The temperature dependence of surface tension \gamma(T) at liquid gallium is
studied theoretically and experimentally using light scattering from capillary
waves. The theoretical model based on the Gibbs thermodynamics relates the
temperature derivative of \gamma to the surface excess entropy -\Delta S.
Although capillary waves contribute to the surface entropy with a positive sign
the effect of dipole layer on \Delta S is negative. Experimental data collected
at a free Ga surface in the temperature range from 30 to 160 C show that the
temperature derivative of the tension changes sign near 100 C.Comment: 11 pages, 1 Postscript figure, submitted to J. Phys.
Exploring the climate of Proxima B with the Met Office Unified Model
This is the author accepted manuscript. The final version is available from EDP Sciences via the DOI in this record.The corrigendum to this article is in ORE at: http://hdl.handle.net/10871/34331We present results of simulations of the climate of the newly discovered planet Proxima Centauri B, performed using the Met Office
Unified Model (UM). We examine the responses of both an ‘Earth-like’ atmosphere and simplified nitrogen and trace carbon dioxide
atmosphere to the radiation likely received by Proxima Centauri B. Additionally, we explore the effects of orbital eccentricity on the
planetary conditions using a range of eccentricities guided by the observational constraints. Overall, our results are in agreement with
previous studies in suggesting Proxima Centauri B may well have surface temperatures conducive to the presence of liquid water.
Moreover, we have expanded the parameter regime over which the planet may support liquid water to higher values of eccentricity
(& 0.1) and lower incident fluxes (881.7 W m−2
) than previous work. This increased parameter space arises because of the low
sensitivity of the planet to changes in stellar flux, a consequence of the stellar spectrum and orbital configuration. However, we also
find interesting differences from previous simulations, such as cooler mean surface temperatures for the tidally-locked case. Finally,
we have produced high resolution planetary emission and reflectance spectra, and highlight signatures of gases vital to the evolution
of complex life on Earth (oxygen, ozone and carbon dioxide).I.B., J.M. and P.E. acknowledge the support of a Met Office Academic Partnership secondment. B.D. thanks the University of Exeter for
support through a Ph.D. studentship. N.J.M. and J.G.’s contributions were in part
funded by a Leverhulme Trust Research Project Grant, and in part by a University
of Exeter College of Engineering, Mathematics and Physical Sciences studentship.
We acknowledge use of the MONSooN system, a collaborative facility
supplied under the Joint Weather and Climate Research Programme, a strategic
partnership between the Met Office and the Natural Environment Research
Council. This work also used the University of Exeter Supercomputer, a DiRAC
Facility jointly funded by STFC, the Large Facilities Capital Fund of BIS and
the University of Exeter
DNA content of a functioning chicken kinetochore
© The Author(s) 2014. In order to understand the three-dimensional structure of the functional kinetochore in vertebrates, we require a complete list and stoichiometry for the protein components of the kinetochore, which can be provided by genetic and proteomic experiments. We also need to know how the chromatin-containing CENP-A, which makes up the structural foundation for the kinetochore, is folded, and how much of that DNA is involved in assembling the kinetochore. In this MS, we demonstrate that functioning metaphase kinetochores in chicken DT40 cells contain roughly 50 kb of DNA, an amount that corresponds extremely closely to the length of chromosomal DNA associated with CENP-A in ChIP-seq experiments. Thus, during kinetochore assembly, CENP-A chromatin is compacted into the inner kinetochore plate without including significant amounts of flanking pericentromeric heterochromatin. © 2014 The Author(s).Wellcome Trust [grant number 073915]; Wellcome Trust Centre for Cell Biology (core grant numbers 077707 and 092076); Darwin Trust of Edinburg
Double-impulse magnetic focusing of launched cold atoms.
We have theoretically investigated three-dimensional focusing of a launched cloud of cold atoms using a pair of magnetic lens pulses (the alternate-gradient method). Individual lenses focus radially and defocus axially or vice versa. The performance of the two possible pulse sequences are compared and found to be ideal for loading both 'pancake' and 'sausage' shaped magnetic/optical microtraps. It is shown that focusing aberrations are considerably smaller for double-impulse magnetic lenses compared to single-impulse magnetic lenses. An analysis of clouds focused by the double-impulse technique is presented
Supersymmetric Electroweak Cosmic Strings
We study the connection between supersymmetry and a topological bound
in a two-Higgs-doublet system with an gauge group. We derive the Bogomol'nyi equations from
supersymmetry considerations showing that they hold provided certain conditions
on the coupling constants, which are a consequence of the huge symmetry of the
theory, are satisfied. Their solutions, which can be interpreted as electroweak
cosmic strings breaking one half of the supersymmetries of the theory, are
studied. Certain interesting limiting cases of our model which have recently
been considered in the literature are finally analyzed.Comment: 20 pages, RevTe
Probing liquid surface waves, liquid properties and liquid films with light diffraction
Surface waves on liquids act as a dynamical phase grating for incident light.
In this article, we revisit the classical method of probing such waves
(wavelengths of the order of mm) as well as inherent properties of liquids and
liquid films on liquids, using optical diffraction. A combination of simulation
and experiment is proposed to trace out the surface wave profiles in various
situations (\emph{eg.} for one or more vertical, slightly immersed,
electrically driven exciters). Subsequently, the surface tension and the
spatial damping coefficient (related to viscosity) of a variety of liquids are
measured carefully in order to gauge the efficiency of measuring liquid
properties using this optical probe. The final set of results deal with liquid
films where dispersion relations, surface and interface modes, interfacial
tension and related issues are investigated in some detail, both theoretically
and experimentally. On the whole, our observations and analyses seem to support
the claim that this simple, low--cost apparatus is capable of providing a
wealth of information on liquids and liquid surface waves in a non--destructive
way.Comment: 25 pages, 12 figures, to appear in Measurement Science and Technology
(IOP
Diffusing-wave spectroscopy of nonergodic media
We introduce an elegant method which allows the application of diffusing-wave
spectroscopy (DWS) to nonergodic, solid-like samples. The method is based on
the idea that light transmitted through a sandwich of two turbid cells can be
considered ergodic even though only the second cell is ergodic. If absorption
and/or leakage of light take place at the interface between the cells, we
establish a so-called "multiplication rule", which relates the intensity
autocorrelation function of light transmitted through the double-cell sandwich
to the autocorrelation functions of individual cells by a simple
multiplication. To test the proposed method, we perform a series of DWS
experiments using colloidal gels as model nonergodic media. Our experimental
data are consistent with the theoretical predictions, allowing quantitative
characterization of nonergodic media and demonstrating the validity of the
proposed technique.Comment: RevTeX, 12 pages, 6 figures. Accepted for publication in Phys. Rev.
Dynamics of viscous amphiphilic films supported by elastic solid substrates
The dynamics of amphiphilic films deposited on a solid surface is analyzed
for the case when shear oscillations of the solid surface are excited. The two
cases of surface- and bulk shear waves are studied with film exposed to gas or
to a liquid. By solving the corresponding dispersion equation and the wave
equation while maintaining the energy balance we are able to connect the
surface density and the shear viscocity of a fluid amphiphilic overlayer with
experimentally accessible damping coefficients, phase velocity, dissipation
factor and resonant frequency shifts of shear waves.Comment: 19 pages, latex, 3 figures in eps-forma
- …