1,387 research outputs found
Anomalous temperature dependence of surface tension and capillary waves at liquid gallium
The temperature dependence of surface tension \gamma(T) at liquid gallium is
studied theoretically and experimentally using light scattering from capillary
waves. The theoretical model based on the Gibbs thermodynamics relates the
temperature derivative of \gamma to the surface excess entropy -\Delta S.
Although capillary waves contribute to the surface entropy with a positive sign
the effect of dipole layer on \Delta S is negative. Experimental data collected
at a free Ga surface in the temperature range from 30 to 160 C show that the
temperature derivative of the tension changes sign near 100 C.Comment: 11 pages, 1 Postscript figure, submitted to J. Phys.
Dynamics of viscous amphiphilic films supported by elastic solid substrates
The dynamics of amphiphilic films deposited on a solid surface is analyzed
for the case when shear oscillations of the solid surface are excited. The two
cases of surface- and bulk shear waves are studied with film exposed to gas or
to a liquid. By solving the corresponding dispersion equation and the wave
equation while maintaining the energy balance we are able to connect the
surface density and the shear viscocity of a fluid amphiphilic overlayer with
experimentally accessible damping coefficients, phase velocity, dissipation
factor and resonant frequency shifts of shear waves.Comment: 19 pages, latex, 3 figures in eps-forma
Topology of six degrees of freedom magnetic bearing
A novel magnetic topology has been designed for a six degrees of freedom, magnetically levitated and driven mirror, to be used in a three dimensional (3D) measurement system based on laser interferometry. The translations of the mirror are to be kept small, whereas the rotations are to be controlled over a large range with a high bandwidth and high accuracy. Finite element modelling (FEM) is used to analyze the proposed topology. For computational load reduction, a 2D FEM model has been derived from the actual 3D topology, which incorporates most of the magnetic subsystems. Simulations show that cross-influence between the actuators is small, that the forces and torques are proportional to the applied currents and that the angle of the rotor is of little influence. This allows the multiple in multiple out system to be regarded as multiple linear single in single out systems. ©2000 American Institute of Physics
Why are sustainable practices often elusive? The role of information flow in the management of networked human-environment interactions
Analyzing the spatial and temporal properties of information flow with a multi-century perspective could illuminate the sustainability of human resource-use strategies. This paper uses historical and archaeological datasets to assess how spatial, temporal, cognitive, and cultural limitations impact the generation and flow of information about ecosystems within past societies, and thus lead to tradeoffs in sustainable practices. While it is well understood that conflicting priorities can inhibit successful outcomes, case studies from Eastern Polynesia, the North Atlantic, and the American Southwest suggest that imperfect information can also be a major impediment to sustainability. We formally develop a conceptual model of Environmental Information Flow and Perception (EnIFPe) to examine the scale of information flow to a society and the quality of the information needed to promote sustainable coupled natural-human systems. In our case studies, we assess key aspects of information flow by focusing on food web relationships and nutrient flows in socio-ecological systems, as well as the life cycles, population dynamics, and seasonal rhythms of organisms, the patterns and timing of speciesâ migration, and the trajectories of human-induced environmental change. We argue that the spatial and temporal dimensions of human environments shape society's ability to wield information, while acknowledging that varied cultural factors also focus a society's ability to act on such information. Our analyses demonstrate the analytical importance of completed experiments from the past, and their utility for contemporary debates concerning managing imperfect information and addressing conflicting priorities in modern environmental management and resource use
Scattering from Electroweak Strings
The scattering of a charged fermion from an electroweak string is studied.
Owing to an amplification of the wave function at the core radius, the cross
sections for helicity flip processes can be largely enhanced. For (where is the Weinberg angle), and , we show that the helicity flip differential cross section
for electrons is of the order and is independent of angle. We
compare our results with those obtained in calculations of rates for baryon
number violating processes in the core of a cosmic string. In that case, while
the enhancement is a general phenomenon, its actual magnitude is extremely
sensitive to the fractional flux carried by the string core. Apart from showing
the existence of a similar enhancement effect for non-topological strings, our
results indicate that in some models the magnitude of enhancement can be
rendered much less sensitive to the value of the parameters in the theories.
Scattering of particles off semi-local strings and axion strings are also
considered.Comment: Replaced with revised version "Tex with phyzzx, 18 pages,
CALT-68-1921 Non-trivial changes made: discussion on axion strings corrected.
Overlap with a recently revised version of hep-ph/9311202 note
Scattering off an SO(10) cosmic string
The scattering of fermions from the abelian string arising during the phase
transition induced by the Higgs in the
126 representation is studied. Elastic cross-sections and baryon number
violating cross-sections due to the coupling to gauge fields in the core of the
string are computed by both a first quantised method and a perturbative second
quantised method. The elastic cross-sections are found to be Aharonov-Bohm
type. However, there is a marked asymmetry between the scattering
cross-sections for left and right handed fields. The catalysis cross-sections
are small, depending on the grand unified scale. If cosmic strings were
observed our results could help tie down the underlying gauge group.Comment: 20 page
Probing liquid surface waves, liquid properties and liquid films with light diffraction
Surface waves on liquids act as a dynamical phase grating for incident light.
In this article, we revisit the classical method of probing such waves
(wavelengths of the order of mm) as well as inherent properties of liquids and
liquid films on liquids, using optical diffraction. A combination of simulation
and experiment is proposed to trace out the surface wave profiles in various
situations (\emph{eg.} for one or more vertical, slightly immersed,
electrically driven exciters). Subsequently, the surface tension and the
spatial damping coefficient (related to viscosity) of a variety of liquids are
measured carefully in order to gauge the efficiency of measuring liquid
properties using this optical probe. The final set of results deal with liquid
films where dispersion relations, surface and interface modes, interfacial
tension and related issues are investigated in some detail, both theoretically
and experimentally. On the whole, our observations and analyses seem to support
the claim that this simple, low--cost apparatus is capable of providing a
wealth of information on liquids and liquid surface waves in a non--destructive
way.Comment: 25 pages, 12 figures, to appear in Measurement Science and Technology
(IOP
Sphalerons, spectral flow, and anomalies
The topology of configuration space may be responsible in part for the
existence of sphalerons. Here, sphalerons are defined to be static but unstable
finite-energy solutions of the classical field equations. Another manifestation
of the nontrivial topology of configuration space is the phenomenon of spectral
flow for the eigenvalues of the Dirac Hamiltonian. The spectral flow, in turn,
is related to the possible existence of anomalies. In this review, the
interconnection of these topics is illustrated for three particular sphalerons
of SU(2) Yang-Mills-Higgs theory.Comment: 35 pages with revtex4; invited paper for the August special issue of
JMP on "Integrability, topological solitons and beyond
Ground state of classical bilayer Wigner crystals
We study the ground state structure of electronic-like bilayers, where
different phases compete upon changing the inter-layer separation or particle
density. New series representations with exceptional convergence properties are
derived for the exact Coulombic energies under scrutiny. The complete phase
transition scenario --including critical phenomena-- can subsequently be worked
out in detail, thereby unifying a rather scattered or contradictory body of
literature, hitherto plagued by the inaccuracies inherent to long range
interaction potentials
Rheological constitutive equation for model of soft glassy materials
We solve exactly and describe in detail a simplified scalar model for the low
frequency shear rheology of foams, emulsions, slurries, etc. [P. Sollich, F.
Lequeux, P. Hebraud, M.E. Cates, Phys. Rev. Lett. 78, 2020 (1997)]. The model
attributes similarities in the rheology of such ``soft glassy materials'' to
the shared features of structural disorder and metastability. By focusing on
the dynamics of mesoscopic elements, it retains a generic character.
Interactions are represented by a mean-field noise temperature x, with a glass
transition occurring at x=1 (in appropriate units). The exact solution of the
model takes the form of a constitutive equation relating stress to strain
history, from which all rheological properties can be derived. For the linear
response, we find that both the storage modulus G' and the loss modulus G''
vary with frequency as \omega^{x-1} for 1<x<2, becoming flat near the glass
transition. In the glass phase, aging of the moduli is predicted. The steady
shear flow curves show power law fluid behavior for x<2, with a nonzero yield
stress in the glass phase; the Cox-Merz rule does not hold in this
non-Newtonian regime. Single and double step strains further probe the
nonlinear behavior of the model, which is not well represented by the BKZ
relation. Finally, we consider measurements of G' and G'' at finite strain
amplitude \gamma. Near the glass transition, G'' exhibits a maximum as \gamma
is increased in a strain sweep. Its value can be strongly overestimated due to
nonlinear effects, which can be present even when the stress response is very
nearly harmonic. The largest strain \gamma_c at which measurements still probe
the linear response is predicted to be roughly frequency-independent.Comment: 24 pages, REVTeX, uses multicol, epsf and amssymp; 20 postscript
figures (included). Minor changes to text (relation to mode coupling theory,
update on recent foam simulations etc.) and figures (emphasis on low
frequency regime); typos corrected and reference added. Version to appear in
Physical Review
- âŠ