50 research outputs found

    Offshore renewables - social impact : two way conversation with the people of Scotland

    Get PDF
    Findings from a piece of participatory research into the social impacts of offshore wind farms (OWFS) in Scotland. It describes innovative methods used to develop a conceptual framework, based on social values, that enables a better understanding of the social impacts of OWFs

    EGFR mutations are associated with response to depatux-m in combination with temozolomide and result in a receptor that is hypersensitive to ligand

    Get PDF
    Background: The randomized phase II INTELLANCE-2/EORTC_1410 trial on EGFR-amplified recurrent glioblastomas showed a trend towards improved overall survival when patients were treated with depatux-m plus temozolomide compared with the control arm of alkylating chemotherapy only. We here performed translational research on material derived from this clinical trial to identify patients that benefit from this treatment.Methods: Targeted DNA-sequencing and whole transcriptome analysis was performed on clinical trial samples. High-throughput, high-content imaging analysis was done to understand the molecular mechanism underlying the survival benefit.Results: We first define the tumor genomic landscape in this well-annotated patient population. We find that tumors harboring EGFR single-nucleotide variations (SNVs) have improved outcome in the depatux-m + TMZ combination arm. Such SNVs are common to the extracellular domain of the receptor and functionally result in a receptor that is hypersensitive to low-affinity EGFR ligands. These hypersensitizing SNVs and the ligand-independent EGFRvIII variant are inversely correlated, indicating two distinct modes of evolution to increase EGFR signaling in glioblastomas. Ligand hypersensitivity can explain the therapeutic efficacy of depatux-m as increased ligand-induced activation will result in increased exposure of the epitope to the antibody-drug conjugate. We also identified tumors harboring mutations sensitive to "classical" EGFR tyrosine-kinase inhibitors, providing a potential alternative treatment strategy.Conclusions: These data can help guide treatment for recurrent glioblastoma patients and increase our understanding into the molecular mechanisms underlying EGFR signaling in these tumors.</p

    Defining EGFR amplification status for clinical trial inclusion

    Get PDF
    BACKGROUND Precision medicine trials targeting the epidermal growth factor receptor (EGFR) in glioblastoma patients require selection for EGFR-amplified tumors. However, there is currently no gold standard in determining the amplification status of EGFR or variant III (EGFRvIII) expression. Here, we aimed to determine which technique and which cutoffs are suitable to determine EGFR amplification status. METHODS We compared fluorescence in-situ hybridization (FISH) and real-time quantitative (RT-q)PCR data from patients screened for trial inclusion into the Intellance 2 clinical trial, with data from a panel-based next generation sequencing (NGS) platform (both DNA and RNA). RESULTS By using data from >1000 samples, we show that at least 50% of EGFR amplified nuclei should be present to define EGFR gene amplification by FISH. Gene amplification (as determined by FISH) correlates with EGFR expression levels (as determined by RT-qPCR) with receiver operating characteristics analysis showing an area under the curve of up to 0.902. EGFR expression as assessed by RT-qPCR therefore may function as a surrogate marker for EGFR amplification. Our NGS data show that EGFR copy numbers can strongly vary between tumors, with levels ranging from 2 to more than 100 copies per cell. Levels exceeding 5 gene copies can be used to define EGFR-amplification by NGS; below this level, FISH detects very few (if any) EGFR amplified nuclei and none of the samples express EGFRvIII. CONCLUSION Our data from central laboratories and diagnostic sequencing facilities, using material from patients eligible for clinical trial inclusion, help define the optimal cutoff for various techniques to determine EGFR amplification for diagnostic purposes

    Habenula volume in bipolar disorder and major depressive disorder: a high-resolution magnetic resonance imaging study

    No full text
    Background: Increased activity of the habenula has been implicated in the etiology of major depressive disorder (MDD), in which reductions in habenula volume are present after death. We conducted the first magnetic resonance imaging analysis of habenula volume in MDD and bipolar disorder (BD). Methods: High-resolution images (resolution approximately.4mm(3)) were acquired with a 3T scanner, and a pulse sequence was optimized for tissue contrast resolution. The habenula was manually segmented by one rater blind to diagnosis. Seventy-four healthy control subjects (HC) were compared with both medicated (lithium/divalproex, n = 15) and unmedicated, depressed BD (n = 22) patients; unmedicated, depressed MDD patients (n = 28); and unmedicated MDD patients in remission (n = 32). Results: The unmedicated BD patients displayed significantly smaller absolute (p &amp;lt; .01) and normalized (p &amp;lt; .05) habenula volumes than the HC subjects. In post hoc assessments analyzing men and women separately, the currently-depressed women with MDD had smaller absolute (p &amp;lt; .05) habenula volumes than the HC women. None of the other psychiatric groups differed significantly from the HC group. Conclusions: We provide further evidence for the involvement of the habenula in affective illness but suggest that a reduction in volume might be more pronounced in unmedicated, depressed BD subjects and female currently depressed MDD subjects. The habenula plays major roles in the long-term modification of monoamine transmission and behavioral responses to stress and in the suppression of dopamine cell activity after the absence of an expected reward. A reduction in habenula volume might thus have functional consequences that contribute to the risk for developing affective disease

    Habenula volume in bipolar disorder and major depressive disorder: a high-resolution magnetic resonance imaging study

    No full text
    Background: Increased activity of the habenula has been implicated in the etiology of major depressive disorder (MDD), in which reductions in habenula volume are present after death. We conducted the first magnetic resonance imaging analysis of habenula volume in MDD and bipolar disorder (BD). Methods: High-resolution images (resolution approximately.4mm(3)) were acquired with a 3T scanner, and a pulse sequence was optimized for tissue contrast resolution. The habenula was manually segmented by one rater blind to diagnosis. Seventy-four healthy control subjects (HC) were compared with both medicated (lithium/divalproex, n = 15) and unmedicated, depressed BD (n = 22) patients; unmedicated, depressed MDD patients (n = 28); and unmedicated MDD patients in remission (n = 32). Results: The unmedicated BD patients displayed significantly smaller absolute (p &amp;lt; .01) and normalized (p &amp;lt; .05) habenula volumes than the HC subjects. In post hoc assessments analyzing men and women separately, the currently-depressed women with MDD had smaller absolute (p &amp;lt; .05) habenula volumes than the HC women. None of the other psychiatric groups differed significantly from the HC group. Conclusions: We provide further evidence for the involvement of the habenula in affective illness but suggest that a reduction in volume might be more pronounced in unmedicated, depressed BD subjects and female currently depressed MDD subjects. The habenula plays major roles in the long-term modification of monoamine transmission and behavioral responses to stress and in the suppression of dopamine cell activity after the absence of an expected reward. A reduction in habenula volume might thus have functional consequences that contribute to the risk for developing affective disease
    corecore