39 research outputs found
CRAF R391W is a melanoma driver oncogene.
Approximately 75% of melanomas have known driver oncogenic mutations in BRAF, NRAS, GNA11 or GNAQ, while the mutations providing constitutive oncogenic signaling in the remaining melanomas are not known. We established a melanoma cell line from a tumor with none of the common driver mutations. This cell line demonstrated a signaling profile similar to BRAF-mutants, but lacked sensitivity to the BRAF inhibitor vemurafenib. RNA-seq mutation data implicated CRAF R391W as the alternative driver mutation of this melanoma. CRAF R391W was homozygous and over expressed. These melanoma cells were highly sensitive to CRAF, but not BRAF knockdown. In reconstitution experiments, CRAF R391W, but not CRAF WT, transformed NIH3T3 cells in soft-agar colony formation assays, increased kinase activity in vitro, induced MAP kinase signaling and conferred vemurafenib resistance. MAP kinase inducing activity was dependent on CRAF dimerization. Thus, CRAF is a bona fide alternative oncogene for BRAF/NRAS/GNAQ/GNA11 wild type melanomas
Recommended from our members
Antitumor activity of the ERK inhibitor SCH772984 [corrected] against BRAF mutant, NRAS mutant and wild-type melanoma.
BackgroundIn melanoma, dysregulation of the MAPK pathway, usually via BRAF(V600) or NRAS(Q61) somatic mutations, leads to constitutive ERK signaling. While BRAF inhibitors are initially effective for BRAF-mutant melanoma, no FDA-approved targeted therapies exist for BRAF-inhibitor-resistant BRAF(V600), NRAS mutant, or wild-type melanoma.MethodsThe 50% inhibitory concentration (IC50) of SCH772984, a novel inhibitor of ERK1/2, was determined in a panel of 50 melanoma cell lines. Effects on MAPK and AKT signaling by western blotting and cell cycle by flow cytometry were determined.ResultsSensitivity fell into three groups: sensitive, 50% inhibitory concentration (IC50) < 1 μM; intermediately sensitive, IC50 1-2 μM; and resistant, >2 μM. Fifteen of 21 (71%) BRAF mutants, including 4 with innate vemurafenib resistance, were sensitive to SCH772984. All three (100%) BRAF/NRAS double mutants, 11 of 14 (78%) NRAS mutants and 5 of 7 (71%) wild-type melanomas were sensitive. Among BRAF(V600) mutants with in vitro acquired resistance to vemurafenib, those with MAPK pathway reactivation as the mechanism of resistance were sensitive to SCH772984. SCH772984 caused G1 arrest and induced apoptosis.ConclusionsCombining vemurafenib and SCH722984 in BRAF mutant melanoma was synergistic in a majority of cell lines and significantly delayed the onset of acquired resistance in long term in vitro assays. Therefore, SCH772984 may be clinically applicable as a treatment for non-BRAF mutant melanoma or in BRAF-mutant melanoma with innate or acquired resistance, alone or in combination with BRAF inhibitors
PET imaging to non-invasively study immune activation leading to antitumor responses with a 4-1BB agonistic antibody
BACKGROUND: Molecular imaging with positron emission tomography (PET) may allow the non-invasive study of the pharmacodynamic effects of agonistic monoclonal antibodies (mAb) to 4-1BB (CD137). 4-1BB is a member of the tumor necrosis factor family expressed on activated T cells and other immune cells, and activating 4-1BB antibodies are being tested for the treatment of patients with advanced cancers. METHODS: We studied the antitumor activity of 4-1BB mAb therapy using [(18) F]-labeled fluoro-2-deoxy-2-D-glucose ([(18) F]FDG) microPET scanning in a mouse model of colon cancer. Results of microPET imaging were correlated with morphological changes in tumors, draining lymph nodes as well as cell subset uptake of the metabolic PET tracer in vitro. RESULTS: The administration of 4-1BB mAb to Balb/c mice induced reproducible CT26 tumor regressions and improved survival; complete tumor shrinkage was achieved in the majority of mice. There was markedly increased [(18) F]FDG signal at the tumor site and draining lymph nodes. In a metabolic probe in vitro uptake assay, there was an 8-fold increase in uptake of [(3)H]DDG in leukocytes extracted from tumors and draining lymph nodes of mice treated with 4-1BB mAb compared to untreated mice, supporting the in vivo PET data. CONCLUSION: Increased uptake of [(18) F]FDG by PET scans visualizes 4-1BB agonistic antibody-induced antitumor immune responses and can be used as a pharmacodynamic readout to guide the development of this class of antibodies in the clinic
Multifunctional T-cell Analyses to Study Response and Progression in Adoptive Cell Transfer Immunotherapy
Adoptive cell transfer (ACT) of genetically engineered T cells expressing cancer-specific T-cell receptors (TCR) is a promising cancer treatment. Here, we investigate the in vivo functional activity and dynamics of the transferred cells by analyzing samples from 3 representative patients with melanoma enrolled in a clinical trial of ACT with TCR transgenic T cells targeted against the melanosomal antigen MART-1. The analyses included evaluating 19 secreted proteins from individual cells from phenotypically defined T-cell subpopulations, as well as the enumeration of T cells with TCR antigen specificity for 36 melanoma antigens. These analyses revealed the coordinated functional dynamics of the adoptively transferred, as well as endogenous, T cells, and the importance of highly functional T cells in dominating the antitumor immune response. This study highlights the need to develop approaches to maintaining antitumor T-cell functionality with the aim of increasing the long-term efficacy of TCR-engineered ACT immunotherapy.
Significance: A longitudinal functional study of adoptively transferred TCR–engineered lymphocytes yielded revealing snapshots for understanding the changes of antitumor responses over time in ACT immunotherapy of patients with advanced melanoma
Erratum to : Antitumor activity of the ERK inhibitor SCH722984 against BRAF mutant, NRAS mutant and wild-type melanoma
Correcció d'errades de l'article: Antitumor activity of the ERK inhibitor SCH772984 [corrected] against BRAF mutant, NRAS mutant and wild-type melanoma. Mol Cancer. 2014 (doi: 10.1186/1476-4598-13-194.)After publication of this work [1], we noted that we repeatedly had a typo mistake across the manuscript. The compound we used to test our cell lines was SCH772984 and not SCH722984. The typo was found misspelled in 54 occasions, including the title. We also wanted to add an affiliation detail to the author's list, as noted above.We regret the mistake and upload this note to clarify it
PD-1 Blockade Expands Intratumoral Memory T Cells
Tumor responses to PD-1 blockade therapy are mediated by T cells, which we characterized in 102 tumor biopsies obtained from 53 patients treated with pembrolizumab, an antibody to PD-1. Biopsies were dissociated and single cell infiltrates were analyzed by multicolor flow cytometry using two computational approaches to resolve the leukocyte phenotypes at the single cell level. There was a statistically significant increase in the frequency of T cells in patients who responded to therapy. The frequency of intratumoral B cells and monocytic myeloid-derived suppressor cells (moMDSCs) significantly increased in patients’ biopsies taken on treatment. The percentage of cells with a T regulatory phenotype, monocytes, and NK cells did not change while on PD-1 blockade therapy. CD8(+) T memory cells were the most prominent phenotype that expanded intratumorally on therapy. However, the frequency of CD4(+) T effector memory cells significantly decreased on treatment, whereas CD4(+) T effector cells significantly increased in nonresponding tumors on therapy. In peripheral blood, an unusual population of blood cells expressing CD56 were detected in two patients with regressing melanoma. In conclusion, PD-1 blockade increases the frequency of T cells, B cells, and MDSCs in tumors, with the CD8(+) T effector memory subset being the major T-cell phenotype expanded in patients with a response to therapy
Effects of MAPK and PI3K Pathways on PD-L1 Expression in Melanoma
PurposePD-L1 is the main ligand for the immune inhibitory receptor PD-1. This ligand is frequently expressed by melanoma cells. In this study, we investigated whether PD-L1 expression is controlled by melanoma driver mutations and modified by oncogenic signaling inhibition.Experimental designExpression of PD-L1 was investigated in a panel of 51 melanoma cell lines containing different oncogenic mutations, including cell lines with innate and acquired resistance to BRAF inhibitors (BRAFi). The effects of targeted therapy drugs on expression of PD-L1 by melanoma cells were investigated.ResultsNo association was found between the level of PD-L1 expression and mutations in BRAF, NRAS, PTEN, or amplification of AKT. Resistance to vemurafenib due to the activation of alternative signaling pathways was accompanied with the induction of PD-L1 expression, whereas the resistance due to the reactivation of the MAPK pathway had no effect on PD-L1 expression. In melanoma cell lines, the effects of BRAF, MEK, and PI3K inhibitors on expression of PD-L1 were variable from reduction to induction, particularly in the presence of INFγ. In PD-L1-exposed lymphocytes, vemurafenib paradoxically restored activity of the MAPK pathway and increased the secretion of cytokines.ConclusionsIn melanoma cell lines, including BRAFi-resistant cells, PD-L1 expression is variably regulated by oncogenic signaling pathways. PD-L1-exposed lymphocytes decrease MAPK signaling, which is corrected by exposure to vemurafenib, providing potential benefits of combining this drug with immunotherapies