206 research outputs found
Major histocompatibility complex I‐induced endoplasmic reticulum stress mediates the secretion of pro‐inflammatory muscle‐derived cytokines
Major histocompatibility complex (MHC) I is an important component of intracellular antigen presentation. However, improper expression of MHC I upon the cell surface has been associated with several autoimmune diseases. Myositis is a rare acquired autoimmune disease which targets skeletal muscle, and MHC I overexpression on the surface of muscle fibres and immune cell infiltration are clinical hallmarks. MHC I overexpression may have an important pathogenic role, mediated by the activation of the endoplasmic reticulum (ER) stress response. Given the evidence that muscle is a diverse source of cytokines, we aimed to investigate whether MHC I overexpression can modify the profile of muscle-derived cytokines and what role the ER stress pathway may play. Using C2C12 myoblasts we overexpressed MHC I with a H-2kb vector in the presence or absence of salubrinal an ER stress pathway modifying compound. MHC I overexpression induced ER stress pathway activation and elevated cytokine gene expression. MHC I overexpression caused significant release of cytokines and chemokines, which was attenuated in the presence of salubrinal. Conditioned media from MHC I overexpressing cells induced in vitro T-cell chemotaxis, atrophy of healthy myotubes and modified mitochondrial function, features which were attenuated in the presence of salubrinal. Collectively, these data suggest that MHC I overexpression can induce pro-inflammatory cytokine/chemokine release from C2C12 myoblasts, a process which appears to be mediated in-part by the ER stress pathway
Redox homeostasis and age-related deficits in neuromuscular integrity and function
Skeletal muscle is a major site of metabolic activity and is the most abundant tissue in the human body. Age-related muscle atrophy (sarcopenia) and weakness, characterized by progressive loss of lean muscle mass and function, is a major contributor to morbidity and has a profound effect on the quality of life of older people. With a continuously growing older population (estimated 2 billion of people aged >60 by 2050), demand for medical and social care due to functional deficits, associated with neuromuscular ageing, will inevitably increase. Despite the importance of this ‘epidemic’ problem, the primary biochemical and molecular mechanisms underlying age-related deficits in neuromuscular integrity and function have not been fully determined. Skeletal muscle generates reactive oxygen and nitrogen species (RONS) from a variety of subcellular sources, and age-associated oxidative damage has been suggested to be a major factor contributing to the initiation and progression of muscle atrophy inherent with ageing. RONS can modulate a variety of intracellular signal transduction processes, and disruption of these events over time due to altered redox control has been proposed as an underlying mechanism of ageing. The role of oxidants in ageing has been extensively examined in different model organisms that have undergone genetic manipulations with inconsistent findings. Transgenic and knockout rodent studies have provided insight into the function of RONS regulatory systems in neuromuscular ageing. This review summarizes almost 30 years of research in the field of redox homeostasis and muscle ageing, providing a detailed discussion of the experimental approaches that have been undertaken in murine models to examine the role of redox regulation in age-related muscle atrophy and weakness
The impact of obesity on time spent with the provider and number of medications managed during office-based physician visits using a cross-sectional, national health survey
<p>Abstract</p> <p>Background</p> <p>Obesity is associated with morbidity, mortality, and increased health care costs. Few studies have examined the impact of obesity on outpatient office visits. The purpose of this study was to determine if outpatient visits by obese persons required more time with the provider and more prescription medication management compared to visits made by non-obese persons.</p> <p>Methods</p> <p>Obesity status was determined for 9,280 patient visits made by persons aged 18 years or older in the 2006 National Ambulatory Medical Care Survey. Multivariate analyses compared obese and non-obese visits, stratified by sex, for duration of the visit and the number of medications mentioned at the visit.</p> <p>Results</p> <p>Average duration of visit was higher among visits with patients determined to be obese. However, these differences were not considered significant after statistical testing. Visits made by obese female patients were significantly more likely to involve more than two prescription medications (OR 1.26, 95% CI 1.05 - 1.51) and visits made by obese male patients were significantly more likely to involve more than two prescription medications (OR 1.46, 95% CI 1.16 - 1.83) as compared to visits made by non-obese patients.</p> <p>Conclusion</p> <p>Time spent with the provider was found to be greater among visits with obese patients, but not significantly different from visits with non-obese patients. The number of medications for each visit was found to be significantly greater for visits where the patient was considered to be obese. Increased time for the visit and increased numbers of medication for each visit translate into increased costs. These findings document the impact of obesity on our health care system and have great implications on medical care cost and planning.</p
A Novel Replication-Competent Vaccinia Vector MVTT Is Superior to MVA for Inducing High Levels of Neutralizing Antibody via Mucosal Vaccination
Mucosal vaccination offers great advantage for inducing protective immune response to prevent viral transmission and dissemination. Here, we report our findings of a head-to-head comparison of two viral vectors modified vaccinia Ankara (MVA) and a novel replication-competent modified vaccinia Tian Tan (MVTT) for inducing neutralizing antibodies (Nabs) via intramuscular and mucosal vaccinations in mice. MVTT is an attenuated variant of the wild-type VTT, which was historically used as a smallpox vaccine for millions of Chinese people. The spike glycoprotein (S) of SARS-CoV was used as the test antigen after the S gene was constructed in the identical genomic location of two vectors to generate vaccine candidates MVTT-S and MVA-S. Using identical doses, MVTT-S induced lower levels (∼2-3-fold) of anti- SARS-CoV neutralizing antibodies (Nabs) than MVA-S through intramuscular inoculation. MVTT-S, however, was capable of inducing consistently 20-to-100-fold higher levels of Nabs than MVA-S when inoculated via either intranasal or intraoral routes. These levels of MVTT-S-induced Nab responses were substantially (∼10-fold) higher than that induced via the intramuscular route in the same experiments. Moreover, pre-exposure to the wild-type VTT via intranasal or intraoral route impaired the Nab response via the same routes of MVTT-S vaccination probably due to the pre-existing anti-VTT Nab response. The efficacy of intranasal or intraoral vaccination, however, was still 20-to-50-fold better than intramuscular inoculation despite the subcutaneous pre-exposure to wild-type VTT. Our data have implications for people who maintain low levels of anti-VTT Nabs after historical smallpox vaccination. MVTT is therefore an attractive live viral vector for mucosal vaccination
Immunotherapy with MVA-BN®-HER2 induces HER-2-specific Th1 immunity and alters the intratumoral balance of effector and regulatory T cells
MVA-BN®-HER2 is a new candidate immunotherapy designed for the treatment of HER-2-positive breast cancer. Here, we demonstrate that a single treatment with MVA-BN®-HER2 exerts potent anti-tumor efficacy in a murine model of experimental pulmonary metastasis. This anti-tumor efficacy occurred despite a strong tumor-mediated immunosuppressive environment characterized by a high frequency of regulatory T cells (Treg) in the lungs of tumor-bearing mice. Immunogenicity studies showed that treatment with MVA-BN®-HER2 induced strongly Th1-dominated HER-2-specific antibody and T-cell responses. MVA-BN®-HER2-induced anti-tumor activity was characterized by an increased infiltration of lungs with highly activated, HER-2-specific, CD8+CD11c+ T cells accompanied by a decrease in the frequency of Treg cells in the lung, resulting in a significantly increased ratio of effector T cells to Treg cells. In contrast, administration of HER2 protein formulated in Complete Freund’s Adjuvant (CFA) induced a strongly Th2-biased immune response to HER-2. However, this did not lead to significant infiltration of the tumor-bearing lungs by CD8+ T cells or the decrease in the frequency of Treg cells nor did it result in anti-tumor efficacy. In vivo depletion of CD8+ cells confirmed that CD8 T cells were required for the anti-tumor activity of MVA-BN®-HER2. Furthermore, depletion of CD4+ or CD25+ cells demonstrated that tumor-induced Treg cells promoted tumor growth and that CD4 effector cells also contribute to MVA-BN®-HER2-mediated anti-tumor efficacy. Taken together, our data demonstrate that treatment with MVA-BN®-HER2 controls tumor growth through mechanisms including the induction of Th1-biased HER-2-specific immune responses and the control of tumor-mediated immunosuppression
The Road Less Traveled: Regulation of Leukocyte Migration Across Vascular and Lymphatic Endothelium by Galectins
Leukocyte entry from the blood into inflamed tissues, exit into the lymphatics, and migration to regional lymph nodes are all crucial processes for mounting an effective adaptive immune response. Leukocytes must cross two endothelial cell layers, the vascular and the lymphatic endothelial cell layers, during the journey from the blood to the lymph node. The proteins and cellular interactions which regulate leukocyte migration across the vascular endothelium are well studied; however, little is known about the factors that regulate leukocyte migration across the lymphatic endothelium. Here, we will summarize evidence for a role for galectins, a family of carbohydrate-binding proteins, in regulating leukocyte migration across the vascular endothelium and propose that galectins are also involved in leukocyte migration across the lymphatic endothelium
Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, Annual Report 2010
This report describes the 2010 research conducted under the U.S. Army Corps of Engineers (USACE) project EST-P-09-1, titled Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, and known as the 'Salmon Benefits' study. The primary goal of the study is to establish scientific methods to quantify habitat restoration benefits to listed salmon and trout in the lower Columbia River and estuary (LCRE) in three required areas: habitat connectivity, early life history diversity, and survival (Figure ES.1). The general study approach was to first evaluate the state of the science regarding the ability to quantify benefits to listed salmon and trout from habitat restoration actions in the LCRE in the 2009 project year, and then, if feasible, in subsequent project years to develop quantitative indices of habitat connectivity, early life history diversity, and survival. Based on the 2009 literature review, the following definitions are used in this study. Habitat connectivity is defined as a landscape descriptor concerning the ability of organisms to move among habitat patches, including the spatial arrangement of habitats (structural connectivity) and how the perception and behavior of salmon affect the potential for movement among habitats (functional connectivity). Life history is defined as the combination of traits exhibited by an organism throughout its life cycle, and for the purposes of this investigation, a life history strategy refers to the body size and temporal patterns of estuarine usage exhibited by migrating juvenile salmon. Survival is defined as the probability of fish remaining alive over a defined amount of space and/or time. The objectives of the 4-year study are as follows: (1) develop and test a quantitative index of juvenile salmon habitat connectivity in the LCRE incorporating structural, functional, and hydrologic components; (2) develop and test a quantitative index of the early life history diversity of juvenile salmon in the LCRE; (3) assess and, if feasible, develop and test a quantitative index of the survival benefits of tidal wetland habitat restoration (hydrologic reconnection) in the LCRE; and (4) synthesize the results of investigations into the indices for habitat connectivity, early life history diversity, and survival benefits
Genetic architecture of common bunt resistance in winter wheat using genome-wide association study
Background: Common bunt (caused by Tilletia caries and T. foetida) has been considered as a major disease in wheat (Triticum aestivum) following rust (Puccinia spp.) in the Near East and is economically important in the Great Plains, USA. Despite the fact that it can be easily controlled using seed treatment with fungicides, fungicides often cannot or may not be used in organic and low-input fields. Planting common bunt resistant genotypes is an alternative.
Results: To identify resistance genes for Nebraska common bunt race, the global set of differential lines were inoculated. Nine differential lines carrying nine different genes had 0% infected heads and seemed to be resistant to Nebraska race. To understand the genetic basis of the resistance in Nebraska winter wheat, a set of 330 genotypes were inoculated and evaluated under field conditions in two locations. Out of the 330 genotypes, 62 genotypes had different degrees of resistance. Moreover, plant height, chlorophyll content and days to heading were scored in both locations. Using genome-wide association study, 123 SNPs located on fourteen chromosomes were identified to be associated with the resistance. Different degrees of linkage disequilibrium was found among the significant SNPs and they explained 1.00 to 9.00% of the phenotypic variance, indicating the presence of many minor QTLs controlling the resistance.
Conclusion: Based on the chromosomal location of some of the known genes, some SNPs may be associated with Bt1, Bt6, Bt11 and Bt12 resistance loci. The remaining significant SNPs may be novel alleles that were not reported previously. Common bunt resistance seems to be an independent trait as no correlation was found between a number of infected heads and chlorophyll content, days to heading or plant height
- …