152 research outputs found

    IQOS exposure impairs human airway cell homeostasis: direct comparison with traditional cigarette and e-cigarette.

    Get PDF
    Heat-not-burn (HNB) devices can alter vital physiological functions in the lung. HNB devices may not be a safer option than cigarette smoking or eCig vaping; this does not support the recommendation of their use over other nicotine delivery products. http://ow.ly/wZ5P30ng8bU

    Epithelial–mesenchymal transition is driven by transcriptional and post transcriptional modulations in copd: Implications for disease progression and new therapeutics

    Full text link
    © 2019 Eapen et al. COPD is a common and highly destructive disease with huge impacts on people and health services throughout the world. It is mainly caused by cigarette smoking though environmental pollution is also significant. There are no current treatments that affect the overall course of COPD; current drugs focus on symptomatic relief and to some extent reducing exacerbation rates. There is an urgent need for in-depth studies of the fundamental pathogenic mechanisms that underpin COPD. This is vital, given the fact that nearly 40%– 60% of the small airway and alveolar damage occurs in COPD well before the first measurable changes in lung function are detected. These individuals are also at a high risk of lung cancer. Current COPD research is mostly centered around late disease and/or innate immune activation within the airway lumen, but the actual damage to the airway wall has early onset. COPD is the end result of complex mechanisms, possibly triggered through initial epithelial activation. To change the disease trajectory, it is crucial to understand the mechanisms in the epithelium that are switched on early in smokers. One such mechanism we believe is the process of epithelial to mesenchymal transition. This article highlights the importance of this profound epithelial cell plasticity in COPD and also its regulation. We consider that understanding early changes in COPD will open new windows for therapy

    Abnormal M1/M2 macrophage phenotype profiles in the small airway wall and lumen in smokers and chronic obstructive pulmonary disease (COPD)

    Get PDF
    © 2017 The Author(s). We explore potential dysregulation of macrophage phenotypes in COPD pathogenesis through integrated study of human small airway tissue, bronchoalveolar lavage (BAL) and an experimental murine model of COPD. We evaluated human airway tissue and BAL from healthy controls, normal lung function smokers (NLFS), and COPD subjects. Both small airways and BAL cells were immunohistochemically stained with anti-CD68 for total macrophages and with anti-CD163 for M2, and anti-iNOS for M1 macrophages. Multiplex ELISA measured BAL cytokines. Comparable cigarette smoke-induced experimental COPD mouse model was assessed for relevant mRNA profiles. We found an increase in pro-inflammatory M1s in the small airways of NLFS and COPD compared to controls with a reciprocal decrease in M2 macrophages, which remained unchanged among pathological groups. However, luminal macrophages showed a dominant M2 phenotype in both NLFS and COPD subjects. BAL cytokine skewed towards an M2 profile with increase in CCL22, IL-4, IL-13, and IL-10 in both NLFS and COPDs. The mouse-model of COPD showed similar increase in mRNA for M2 markers. Our finding suggests abnormal macrophage switching in both mucosal and luminal areas of COPD patients, that strongly associated with cytokine balance. There may be potential for beneficial therapeutic cytokine manipulation of macrophage phenotypes in COPD

    microRNAs Are Key Regulators in Chronic Lung Disease: Exploring the Vital Link between Disease Progression and Lung Cancer

    Get PDF
    microRNAs (miRNAs) bind to mRNAs and inhibit their expression through post-transcriptionally regulating gene expression. Here, we elaborate upon the concise summary of the role of miRNAs in carcinogenesis with specific attention to precursor respiratory pathogenesis caused by cigarette smoke modulation of these miRNAs. We review how miRNAs are implicated in cigarette-smoke-driven mechanisms, such as epithelial to mesenchymal transition, autophagy modulation, and lung ageing, which are important in the development of chronic obstructive pulmonary disease and potential progression to lung cancer. Extracellular vesicles are key to inter-cellular communication and sharing of miRNAs. A deeper understanding of the role of miRNAs in chronic respiratory disease and their use as clinical biomarkers has great potential. Therapeutic targeting of miRNAs may significantly benefit the prevention of cancer progression

    Impact of Maternal Air Pollution exposure on children's lung health: An Indian perspective

    Get PDF
    © 2018 by the authors. Air pollution has become an emerging invisible killer in recent years and is a major cause of morbidity and mortality globally. More than 90% of the world's children breathe toxic air every day. India is among the top ten most highly polluted countries with an average PM 10 level of 134 μg/m 3 per year. It is reported that 99% of India's population encounters air pollution levels that exceed the World Health Organization Air Quality Guideline, advising a PM 2.5 permissible level of 10 μg/m 3 . Maternal exposure to air pollution has serious health outcomes in offspring because it can affect embryonic phases of development during the gestation period. A fetus is more prone to effects from air pollution during embryonic developmental phases due to resulting oxidative stress as antioxidant mechanisms are lacking at that stage. Any injury during this vulnerable period (embryonic phase) will have a long-term impact on offspring health, both early and later in life. Epidemiological studies have revealed that maternal exposure to air pollution increases the risk of development of airway disease in the offspring due to impaired lung development in utero. In this review, we discuss cellular mechanisms involved in maternal exposure to air pollution and how it can impact airway disease development in offspring. A better understanding of these mechanisms in the context of maternal exposure to air pollution can offer a new avenue to prevent the development of airway disease in offspring

    Apoptosis signal-regulating kinase 1 inhibition attenuates human airway smooth muscle growth and migration in chronic obstructive pulmonary disease

    Get PDF
    © 2018 The Author(s). Increased airway smooth muscle (ASM) mass is observed in chronic obstructive pulmonary disease (COPD), which is correlated with disease severity and negatively affects lung function in these patients. Thus, there is clear unmet clinical need for finding new therapies which can target airway remodeling and disease progression in COPD. Apoptosis signal-regulating kinase 1 (ASK1) is a ubiquitously expressed mitogen-activated protein kinase (MAPK) kinase kinase (MAP3K) activated by various stress stimuli, including reactive oxygen species (ROS), tumor necrosis factor (TNF)-α, and lipopolysaccharide (LPS) and is known to regulate cell proliferation. ASM cells from COPD patients are hyperproliferative to mitogens in vitro. However, the role of ASK1 in ASM growth is not established. Here, we aim to determine the effects of ASK1 inhibition on ASM growth and pro-mitogenic signaling using ASM cells from COPD patients. We found greater expression of ASK1 in ASM bundles of COPD lung when compared with non-COPD. Pre-treatment of ASM cells with highly selective ASK1 inhibitor, TC ASK 10 resulted in a dose-dependent reduction in mitogen (FBS, PDGF, and EGF; 72 h)-induced ASM growth as measured by CyQUANT assay. Further, molecular targetting of ASK1 using siRNA in ASM cells prevented mitogen-induced cell growth. In addition, to anti-mitogenic potential, ASK1 inhibitor also prevented TGFβ1-induced migration of ASM cells in vitro. Immunoblotting revealed that anti-mitogenic effects are mediated by C-Jun N-terminal kinase (JNK) and p38MAP kinase-signaling pathways as evident by reduced phosphorylation of downstream effectors JNK1/2 and p38MAP kinases, respectively, with no effect on extracellular signal-regulated kinase (ERK) 1/2 (ERK1/2). Collectively, these findings establish the anti-mitogenic effect of ASK1 inhibition and identify a novel pathway that can be targetted to reduce or prevent excessive ASM mass in COPD

    Heparin-binding epidermal growth factor (HB-EGF) drives EMT in patients with COPD: Implications for disease pathogenesis and novel therapies

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is a progressive and devastating chronic lung condition that has a significant global burden, both medically and financially. Currently there are no medications that can alter the course of disease. At best, the drugs in clinical practice provide symptomatic relief to suffering patients by alleviating acute exacerbations. Most of current clinical research activities are in late severe disease with lesser attention given to early disease manifestations. There is as yet, a lack of understanding of the underlying mechanisms of disease progression and the molecular switches that are involved in their manifestation. Small airway fibrosis and obliteration are known to cause fixed airflow obstruction in COPD, and the consequential damage to the lung has an early onset. So far, there is little evidence of the mechanisms that underlie this aspect of pathology. However, emerging research confirms that airway epithelial reprogramming or epithelial to mesenchymal transition (EMT) is a key mechanism that drives fibrotic remodelling changes in smokers and patients with COPD. A recent study by Lai et al. further highlights the importance of EMT in smoking-related COPD pathology. The authors identify HB-EGF, an EGFR ligand, as a key driver of EMT and a potential new therapeutic target for the amelioration of EMT and airway remodelling. There are also wider implications in lung cancer prophylaxis, which is another major comorbidity associated with COPD. We consider that improved molecular understanding of the intricate pathways associated with epithelial cell plasticity in smokers and patients with COPD will have major therapeutic implications

    Impact of Deleterious Mutations on Structure, Function and Stability of Serum/Glucocorticoid Regulated Kinase 1: A Gene to Diseases Correlation.

    Get PDF
    Serum and glucocorticoid-regulated kinase 1 (SGK1) is a Ser/Thr protein kinase involved in regulating cell survival, growth, proliferation, and migration. Its elevated expression and dysfunction are reported in breast, prostate, hepatocellular, lung adenoma, and renal carcinomas. We have analyzed the SGK1 mutations to explore their impact at the sequence and structure level by utilizing state-of-the-art computational approaches. Several pathogenic and destabilizing mutations were identified based on their impact on SGK1 and analyzed in detail. Three amino acid substitutions, K127M, T256A, and Y298A, in the kinase domain of SGK1 were identified and incorporated structurally into original coordinates of SGK1 to explore their time evolution impact using all-atom molecular dynamic (MD) simulations for 200 ns. MD results indicate substantial conformational alterations in SGK1, thus its functional loss, particularly upon T256A mutation. This study provides meaningful insights into SGK1 dysfunction upon mutation, leading to disease progression, including cancer, and neurodegeneration
    • …
    corecore