524 research outputs found
The Team of Life: A narrative approach to building resilience in UK school children
Concern about children and young people's mental health is high on the UK national agenda. Access to specialist Child and Adolescent Mental Health Services (CAMHS) is perceived as problematic due to high thresholds, clinic-based service delivery and associated stigma. Schools and youth work contexts present alternative and more accessible settings for early intervention and preventative work aimed at promoting positive mental health. The Team of Life is a narrative group methodology with sporting metaphors, which encourages young people to recognise the strength and resilience in their life teams. The approach has been used within diverse contexts internationally, for example with former child soldiers in Uganda, young men from refugee backgrounds and young people in Australian schools. Innovative partnership work between health and education has led to the implementation of the Team of Life in a UK school and the development of a manualised Team of Life Programme. We now report findings from pilot work evaluating feasibility and outcomes for the programme within a UK secondary school setting. Quantitative findings include significant positive change in Goal Based Outcomes as well as significant reductions in emotional and behaviour difficulties measured by the Child Behaviour Checklist. Qualitative thematic analysis of participant feedback indicates benefits relating to the experience of 'shared understanding', 'confidence', 'peer support' and the 'positive impact of sport'. Further research is planned to evaluate the effectiveness on a larger scale. This pilot study was undertaken as part of CAMHS Extended Schools work. Potential for collaboration between clinical and education psychology colleagues in relation to the promotion of positive mental health in schools is discussed
Arrival direction distribution of cosmic rays of energy 10 (18) eV
The Haverah Park air-shower experiment recorded over 8500 events with primary energy 10 to the 18th power eV between 1963 and 1983. An analysis of these events for anisotropies in celestial and galactic coordinates is reported. No very striking anisotropies are observed
Recommended from our members
Modulation of magnetic behavior via ligand-field effects in the trigonal clusters (PhL)Fe3L*3 (L* = thf, py, PMe2Ph)
Utilizing a hexadentate ligand platform, a series of trinuclear iron clusters (PhL)Fe3L*3 (PhLH6 1â4 MeC (CH2NPh-o-NPh)3; L* 1â4 tetrahydrofuran (1), pyridine (2), PMePh2 (3)) has been prepared. The phenyl substituents on the ligand sterically prohibit strong ironâiron bonding from occurring but maintain a sufficiently close proximity between iron centers to permit direct interactions. Coordination of the weak-field tetrahydrofuran ligand to the iron centers results in a well-isolated, high-spin S 1â4 6 or S 1â4 5 ground state, as ascertained through variable-temperature dc magnetic susceptibility and low- temperature magnetization measurements. Replacing the tetrahydrofuran ligands with stronger s-donating pyridine or tertiary phosphine ligands reduces the ground state to S 1â4 2 and gives rise to temperature-dependent magnetic susceptibility. In these cases, the magnetic susceptibility cannot be explained as arising simply from superexchange interactions between metal centers through the bridging amide ligands. Rather, the experimental data are best modelled by considering a thermally- induced variation in molecular spin state between S 1â4 2 and S 1â4 4. Fits to these data provide thermodynamic parameters of DH 1â4 406 cm 1 and Tc 1â4 187 K for 2 and DH 1â4 604 cm 1 and Tc 1â4 375 K for 3. The difference in these parameters is consistent with ligand field strength differences between pyridine and phosphine ligands. To rationalize the spin state variation across the series of clusters, we first propose a qualitative model of the Fe3 core electronic structure that considers direct FeâFe interactions, arising from direct orbital overlap. We then present a scenario, consistent with the observed magnetic behaviour, in which the s orbitals of the electronic structure are perturbed by substitution of the ancillary ligands.Chemistry and Chemical Biolog
The primary cosmic ray spectrum above 10 to the 19th power eV
Progress on a re-evaluation of the spectrum of cosmic rays determined with the Haverah Park shower array is described. Particular attention is paid to the reality of some giant showers
Recommended from our members
Site-Isolated Redox Reactivity in a Trinuclear Iron Complex
The symmetric, high-spin triiron complex (PhL)Fe3(thf)3 reacts with mild chemical oxidants (e.g., Ph3CX, I2) to afford an asymmetric core where one iron ion bears the halide ligand (PhL)Fe3X(L), and the hexadentate (PhL = MeC(CH2NPh-o-NPh)3) ligand has undergone significant rearrangement. In the absence of a suitable trapping ligand, the Cl and Br complexes form (”-X)2 bridged structures of the type [(PhL)Fe3(”-X)]2. In the trinuclear complexes, the halide-bearing iron site sits in approximate trigonal bipyramidal (tbp) geometry formed by two (PhL) anilides and an exogenous solvent molecule. The two distal iron ions reside in distorted square-planar sites featuring a short FeâFe separation at 2.301 Ă
, whereas the distance to the tbp site is substantially elongated (2.6â2.7 Ă
). Zero-field, 57Fe Mössbauer analysis reveals the diiron unit as the locus of oxidation while the tbp site bearing the halide ligand remains divalent. Magnetic data acquired for the series reveals the oxidized diiron unit comprises a strongly coupled S = 3/2 unit that is weakly ferromagnetically coupled to the high spin (S = 2) ferrous site, giving an overall S = 7/2 ground state for the trinuclear units.Chemistry and Chemical Biolog
School's Out: Seasonal Variation in the Movement Patterns of School Children.
School children are core groups in the transmission of many common infectious diseases, and are likely to play a key role in the spatial dispersal of disease across multiple scales. However, there is currently little detailed information about the spatial movements of this epidemiologically important age group. To address this knowledge gap, we collaborated with eight secondary schools to conduct a survey of movement patterns of school pupils in primary and secondary schools in the United Kingdom. We found evidence of a significant change in behaviour between term time and holidays, with term time weekdays characterised by predominately local movements, and holidays seeing much broader variation in travel patterns. Studies that use mathematical models to examine epidemic transmission and control often use adult commuting data as a proxy for population movements. We show that while these data share some features with the movement patterns reported by school children, there are some crucial differences between the movements of children and adult commuters during both term-time and holidays.AJK was supported by the Medical Research Council (fellowship MR/K021524/1, http://www.mrc.ac.uk/) and the RAPIDD program of the Science & Technology Directorate, Department of Homeland Security, and the Fogarty International Center, National Institutes of Health (http://www.fic.nih.gov/about/staff/pagesâ/epidemiology-population.aspx#rapidd). AJKC was supported by the Alborada Trust (http://www.alboradatrust.com/). KTDE was supported by the NIHR (CDF-2011-04- 019, http://www.nihr.ac.uk/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.This is the final version. It was first published by PLOS at http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0128070#
Effects of Contact Network Models on Stochastic Epidemic Simulations
The importance of modeling the spread of epidemics through a population has
led to the development of mathematical models for infectious disease
propagation. A number of empirical studies have collected and analyzed data on
contacts between individuals using a variety of sensors. Typically one uses
such data to fit a probabilistic model of network contacts over which a disease
may propagate. In this paper, we investigate the effects of different contact
network models with varying levels of complexity on the outcomes of simulated
epidemics using a stochastic Susceptible-Infectious-Recovered (SIR) model. We
evaluate these network models on six datasets of contacts between people in a
variety of settings. Our results demonstrate that the choice of network model
can have a significant effect on how closely the outcomes of an epidemic
simulation on a simulated network match the outcomes on the actual network
constructed from the sensor data. In particular, preserving degrees of nodes
appears to be much more important than preserving cluster structure for
accurate epidemic simulations.Comment: To appear at International Conference on Social Informatics (SocInfo)
201
Oscillating epidemics in a dynamic network model: stochastic and mean-field analysis
An adaptive network model using SIS epidemic propagation with link-type-dependent link activation and deletion is considered. Bifurcation analysis of the pairwise ODE approximation and the network-based stochastic simulation is carried out, showing that three typical behaviours may occur; namely, oscillations can be observed besides disease-free or endemic steady states. The oscillatory behaviour in the stochastic simulations is studied using Fourier analysis, as well as through analysing the exact master equations of the stochastic model. By going beyond simply comparing simulation results to mean-field models, our approach yields deeper insights into the observed phenomena and help better understand and map out the limitations of mean-field models
Web-based participatory surveillance of infectious diseases: the Influenzanet participatory surveillance experience.
To overcome the limitations of the state-of-the-art influenza surveillance systems in Europe, we established in 2008 a European-wide consortium aimed at introducing an innovative information and communication technology approach for a web-based surveillance system across different European countries, called Influenzanet. The system, based on earlier efforts in The Netherlands and Portugal, works with the participation of the population in each country to collect real-time information on the distribution of influenza-like illness cases through web surveys administered to volunteers reporting their symptoms (or lack of symptoms) every week during the influenza season. Such a large European-wide web-based monitoring infrastructure is intended to rapidly identify public health emergencies, contribute to understanding global trends, inform data-driven forecast models to assess the impact on the population, optimize the allocation of resources, and help in devising mitigation and containment measures. In this article, we describe the scientific and technological issues faced during the development and deployment of a flexible and readily deployable web tool capable of coping with the requirements of different countries for data collection, during either a public health emergency or an ordinary influenza season. Even though the system is based on previous successful experience, the implementation in each new country represented a separate scientific challenge. Only after more than 5 years of development are the existing platforms based on a plug-and-play tool that can be promptly deployed in any country wishing to be part of the Influenzanet network, now composed of The Netherlands, Belgium, Portugal, Italy, the UK, France, Sweden, Spain, Ireland, and Denmark
Epidemics on contact networks: a general stochastic approach
Dynamics on networks is considered from the perspective of Markov stochastic
processes. We partially describe the state of the system through network motifs
and infer any missing data using the available information. This versatile
approach is especially well adapted for modelling spreading processes and/or
population dynamics. In particular, the generality of our systematic framework
and the fact that its assumptions are explicitly stated suggests that it could
be used as a common ground for comparing existing epidemics models too complex
for direct comparison, such as agent-based computer simulations. We provide
many examples for the special cases of susceptible-infectious-susceptible (SIS)
and susceptible-infectious-removed (SIR) dynamics (e.g., epidemics propagation)
and we observe multiple situations where accurate results may be obtained at
low computational cost. Our perspective reveals a subtle balance between the
complex requirements of a realistic model and its basic assumptions.Comment: Main document: 16 pages, 7 figures. Electronic Supplementary Material
(included): 6 pages, 1 tabl
- âŠ