427 research outputs found

    Now we’re cooking: new successes for shake-and-bake

    Get PDF
    AbstractShake-and-bake is an automatic procedure for phase determination developed for large molecules. The procedure is based on a minimal function which is optimized through alternate cycles of reciprocal space phase refinement and real-space filtering. The shake-and-bake technique has now been used to determine the structures of several small proteins

    Selenium-based MAD phasing: setting the sites on larger structures

    Get PDF

    Crystal Structure of an Aminoimidazole Riboside Kinase from Salmonella enterica Implications for the Evolution of the Ribokinase Superfamily

    Get PDF
    AbstractThe crystal structures of a Salmonella enterica aminoimidazole riboside (AIRs) kinase, its complex with the substrate AIRs, and its complex with AIRs and an ATP analog were determined at 2.6 Å, 2.9 Å, and 2.7 Å, respectively. The product of the Salmonella-specific gene stm4066, AIRs kinase, is a homodimer with one active site per monomer. The core structure, consisting of an eight-stranded β sheet flanked by eight α helices, indicates that AIRs kinase is a member of the ribokinase superfamily. Unlike ribokinase and adenosine kinase in this superfamily, AIRs kinase does not show significant conformational changes upon substrate binding. The active site is covered by a lid formed by residues 16–28 and 86–100. A comparison of the structure of AIRs kinase with other ribokinase superfamily members suggests that the active site lid and conformational changes that occur upon substrate binding may be advanced features in the evolution of the ribokinase superfamily

    Structures of the N47A and E109Q mutant proteins of pyruvoyl-dependent arginine decarboxylase from Methanococcus jannaschii

    Get PDF
    The crystal structures of two arginine decarboxylase mutant proteins provide insights into the mechanisms of pyruvoyl-group formation and the decarboxylation reaction

    Observation of an unexpected third receptor molecule in the crystal structure of human interferon-γ receptor complex

    Get PDF
    AbstractBackground: Molecular interactions among cytokines and cytokine receptors form the basis of many cell-signaling pathways relevant to immune function. Interferon-γ (IFN-γ) signals through a multimeric receptor complex consisting of two different but structurally related transmembrane chains: the high-affinity receptor-binding subunit (IFN-γRα) and a species-specific accessory factor (AF-1 or IFN-γRβ). In the signaling complex, the two receptors probably interact with one another through their extracellular domains. Understanding the atomic interactions of signaling complexes enhances the ability to control and alter cell signaling and also provides a greater understanding of basic biochemical processes.Results: The crystal structure of the complex of human IFN-γ with the soluble, glycosylated extracellular part of IFN-γRα has been determined at 2.9 Å resolution using multiwavelength anomalous diffraction methods. In addition to the expected 2:1 complex, the crystal structure reveals the presence of a third receptor molecule not directly associated with the IFN-γ dimer. Two distinct intermolecular contacts, involving the edge strands of the C-terminal domains, are observed between this extra receptor and the 2:1 receptor–ligand complex thereby forming a 3:1 complex.Conclusions: The observed interactions in the 2:1 complex of the high-affinity cell-surface receptor with the IFN-γ cytokine are similar to those seen in a previously reported structure where the receptor chains were not glycosylated. The formation of β-sheet packing interactions between pairs of IFN-γRα receptors in these crystals suggests a possible model for receptor oligomerization of Rα and the structurally homologous Rβ receptors in the fully active IFN-γ signaling complex

    A novel mechanism of sulfur transfer catalyzed by O-acetylhomoserine sulfhydrylase in the methionine-biosynthetic pathway of Wolinella succinogenes

    Get PDF
    O-Acetylhomoserine sulfhydrylase (OAHS) is a pyridoxal 5′-­phosphate (PLP) dependent sulfide-utilizing enzyme in the l-cysteine and l-methionine biosynthetic pathways of various enteric bacteria and fungi. OAHS catalyzes the conversion of O-acetylhomoserine to homocysteine using sulfide in a process known as direct sulfhydrylation. However, the source of the sulfur has not been identified and no structures of OAHS have been reported in the literature. Here, the crystal structure of Wolinella succinogenes OAHS (MetY) determined at 2.2 Å resolution is reported. MetY crystallized in space group C2 with two monomers in the asymmetric unit. Size-exclusion chromatography, dynamic light scattering and crystal packing indicate that the biological unit is a tetramer in solution. This is further supported by the crystal structure, in which a tetramer is formed using a combination of non­­crystallographic and crystallographic twofold axes. A search for structurally homologous proteins revealed that MetY has the same fold as cystathionine γ-lyase and methionine γ-lyase. The active sites of these enzymes, which are also PLP-dependent, share a high degree of structural similarity, suggesting that MetY belongs to the γ-elimination subclass of the Cys/Met metabolism PLP-dependent family of enzymes. The structure of MetY, together with biochemical data, provides insight into the mechanism of sulfur transfer to a small molecule via a protein thiocarboxylate intermediate

    Atomic structure at 2.5 Å resolution of uridine phosphorylase from E. coli as refined in the monoclinic crystal lattice

    Get PDF
    AbstractUridine phosphorylase from E. coli (Upase) has been crystallized using vapor diffusion technique in a new monoclinic crystal form. The structure was determined by the molecular replacement method at 2.5 Å resolution. The coordinates of the trigonal crystal form were used as a starting model and the refinement by the program XPLOR led to the R-factor of 18.6%. The amino acid fold of the protein was found to be the same as that in the trigonal crystals. The positions of flexible regions were refined. The conclusion about the involvement in the active site is in good agreement with the results of the biochemical experiments
    corecore