39 research outputs found

    Delivery Challenges for Fluoride, Chlorhexidine and Xylitol

    Get PDF
    The progression or reversal of dental caries is determined by the balance between pathological and protective factors. It is well established that a) fluoride inhibits demineralization and enhances remineralization, b) chlorhexidine reduces the cariogenic bacterial challenge, and c) xylitol is non-cariogenic and has antibacterial properties. The challenge that we face is how best to deliver these anti-caries entities at true therapeutic levels, over time, to favorably tip the caries balance. High caries risk people, including children with Early Childhood Caries (ECC), are a special challenge, since high cariogenic bacterial activity can override fluoride therapy. Current fluoride and chlorhexidine varnishes deliver all their activity within about 24 hours. Early studies with experimental slow release fluoride devices retained elevated levels of fluoride for months in a therapeutic range but have not been pursued. Preventive dentistry has largely ignored the benefits of reducing the bacterial challenge, partially due to primitive and inadequate delivery systems. For example, Chlorhexidine applied as a rinse partially reduces some bacteria but not others that are hiding within the biofilm. Better antibacterials and better delivery systems are needed. Xylitol delivered by gum or lozenge appears to be effective clinically in reducing cariogenic bacteria and caries levels, but novel systems that deliver therapeutic amounts when needed would be a major advance, especially for young children. Reducing the cariogenic bacterial challenge and enhancing the effect of fluoride by the use of new sustained-delivery systems would have a major effect on dealing with caries as a disease

    Deposition of fluoride on enamel surfaces released from varnishes is limited to vicinity of fluoridation site

    Get PDF
    The aim of the in-situ study was to determine fluoride uptake in non-fluoridated, demineralized enamel after application of fluoride varnishes on enamel samples located at various distances from the non-fluoridated samples. All enamel samples used were demineralized with acidic hydroxyethylcellulose before the experiment. Intra-oral appliances were worn by ten volunteers in three series: (1, Mirafluorid, 0.15% F; 2, Duraphat, 2.3% F and 3, unfluoridated controls) of 6 days each. Each two enamel samples were prepared from 30 bovine incisors. One sample was used for the determination of baseline fluoride content (BFC); the other was treated according to the respective series and fixed in the intra-oral appliance for 6 days. Additionally, from 120 incisors, each four enamel samples were prepared (one for BFC). Three samples (a–c) were placed into each appliance at different sites: (a) directly neighboured to the fluoridated specimen (=next), (b) at 1-cm distance (=1 cm) and (c) in the opposite buccal aspect of the appliance (=opposite). At these sites, new unfluoridated samples were placed at days 1, 3 and 5, which were left in place for 1 day. The volunteers brushed their teeth and the samples with fluoridated toothpaste twice per day. Both the KOH-soluble and structurally bound fluoride were determined in all samples to determine fluoride uptake and were statistically analyzed. One day, after fluoridation with Duraphat, KOH-soluble fluoride uptake in specimen a (=next) was significantly higher compared to the corresponding samples of both the control and Mirafluorid series, which in turn were not significantly different from each other. At all other sites and time points, fluoride uptake in the enamel samples were not different from controls for both fluoride varnishes. Within the first day after application, intra-oral-fluoride release from the tested fluoride varnish Duraphat leads to KOH-soluble fluoride uptake only in enamel samples located in close vicinity to the fluoridation site

    Dental Ceramics and Composite Resins as Restorative Materials

    No full text
    corecore