52 research outputs found

    Phytoplankton Community and Algal Toxicity at a Recurring Bloom in Sullivan Bay, Kabetogama Lake, Minnesota, USA

    Get PDF
    Kabetogama Lake in Voyageurs National Park, Minnesota, USA suffers from recurring late summer algal blooms that often contain toxin-producing cyanobacteria. Previous research identified the toxin microcystin in blooms, but we wanted to better understand how the algal and cyanobacterial community changed throughout an open water season and how changes in community structure were related to toxin production. Therefore, we sampled one recurring bloom location throughout the entire open water season. The uniqueness of this study is the absence of urban and agricultural nutrient sources, the remote location, and the collection of samples before any visible blooms were present. Through quantitative polymerase chain reaction (qPCR), we discovered that toxin-forming cyanobacteria were present before visible blooms and toxins not previously detected in this region (anatoxin-a and saxitoxin) were present, indicating that sampling for additional toxins and sampling earlier in the season may be necessary to assess ecosystems and human health risk

    Effect of coagulants in removing cyanotoxin-microcystinin drinking water treatment process

    Get PDF
    The presence of cyanotoxins in source water is a worldwide problem. The most widespread cyanotoxin, called microcystins (MCs), produced from Microcystis Aeroginosa, can cause severe problems to the environment, animals and human health. A standard drinking water treatment process involves coagulation/flocculation process as primary treatment to remove cyanobacteria from source water. In coagulation/flocculation processes, a chemical coagulant is added to source water using rapid/slow mixing to facilitate bonding among particulates. As the process involves chemical and mechanical stress, cyanotoxin may get released to the drinking water. Coagulation/flocculation process can remove intact cyanobacteria effectively, however, study is limited to show the effect of coagulants in removing cyanotoxins during coagulation/flocculation. Our study would evaluate different types and concentration of coagulants to establish effective methods to remove cyanotoxins at the preliminary drinking water treatment. In this study, a jar test was conducted with microcystin-LR (MCLR) and microcystin-LA (MCLA) to show improved removal. A coagulation/flocculation process was used at laboratory bench scale. This study is important, as it establishes a method that would eliminate harmful cyanotoxins before they enter the secondary treatment process. The results would help drinking water facilities to remove cyanotoxins in the primary treatment where cyanobacteria and their toxins may be found in the source water

    A Novel Jumbo Phage PhiMa05 Inhibits Harmful Microcystis sp.

    Get PDF
    Microcystis poses a concern because of its potential contribution to eutrophication and production of microcystins (MCs). Phage treatment has been proposed as a novel biocontrol method for Microcystis. Here, we isolated a lytic cyanophage named PhiMa05 with high efficiency against MCs-producing Microcystis strains. Its burst size was large, with approximately 127 phage particles/infected cell, a short latent period (1 day), and high stability to broad salinity, pH and temperature ranges. The PhiMa05 structure was composed of an icosahedral capsid (100 nm) and tail (120 nm), suggesting that the PhiMa05 belongs to the Myoviridae family. PhiMa05 inhibited both planktonic and aggregated forms of Microcystis in a concentration-dependent manner. The lysis of Microcystis resulted in a significant reduction of total MCs compared to the uninfected cells. A genome analysis revealed that PhiMa05 is a double-stranded DNA virus with a 273,876 bp genome, considered a jumbo phage. Out of 254 predicted open reading frames (ORFs), only 54 ORFs were assigned as putative functional proteins. These putative proteins are associated with DNA metabolisms, structural proteins, host lysis and auxiliary metabolic genes (AMGs), while no lysogenic, toxin and antibiotic resistance genes were observed in the genome. The AMGs harbored in the phage genome are known to be involved in energy metabolism [photosynthesis and tricarboxylic acid cycle (TCA)] and nucleotide biosynthesis genes. Their functions suggested boosting and redirecting host metabolism during viral infection. Comparative genome analysis with other phages in the database indicated that PhiMa05 is unique. Our study highlights the characteristics and genome analysis of a novel jumbo phage, PhiMa05. PhiMa05 is a potential phage for controlling Microcystis bloom and minimizing MC occurrence

    The potential of mixed-species biofilms to address remaining challenges for economically-feasible microalgal biorefineries: a review

    Get PDF
    Several key challenges are hindering large-scale cultivation of microalgae for industrial purposes, including wastewater treatment, carbon capture, biomass production, and renewable energy production. These challenges are closely related to efficacy of 1) resource utilization, 2) biomass production, and 3) harvesting. This review describes how attached or biofilm cultivation of microalgae and/or cyanobacteria with heterotrophic bacteria in consortia could simultaneously resolve these technical obstacles, thereby reducing monetary and energetic costs of producing microalgal bioenergy. Symbiotic relationships between these organisms reduces the need for aeration or exogenous supplementation of nutrients. Additionally, this review details how increasing biodiversity correlates with diversity of functionality (carbon capture and nitrification) and how attached/biofilm cultivation can improve photosynthetic efficiency and water footprint. Mixed-species biofilms have persisted for billions of years across earth’s natural history because they are some of nature’s most highly efficient biosystems, and they deserve more dedicated study and broader application in bioenergy production. This review details the practical connections between microalgal-bacterial consortia, attached/biofilm cultivation, waste-to-value biorefining, and relevance to bioenergy production and value-added products (VAPs); four topics previously unconnected in a single review. As such this review aims to bridge current knowledge gaps across multiple research fields and industrial sectors, towards the goal of efficient, economical, and climate-forward microalgal bio-services and bioenergy production

    Microcystis Sp. Co-Producing Microcystin and Saxitoxin from Songkhla Lake Basin, Thailand

    Get PDF
    The Songkhla Lake Basin (SLB) located in Southern Thailand, has been increasingly polluted by urban and industrial wastewater, while the lake water has been intensively used. Here, we aimed to investigate cyanobacteria and cyanotoxins in the SLB. Ten cyanobacteria isolates were identified as Microcystis genus based on16S rDNA analysis. All isolates harbored microcystin genes, while five of them carried saxitoxin genes. On day 15 of culturing, the specific growth rate and Chl-a content were 0.2–0.3 per day and 4 µg/mL. The total extracellular polymeric substances (EPS) content was 0.37–0.49 µg/mL. The concentration of soluble EPS (sEPS) was 2 times higher than that of bound EPS (bEPS). The protein proportion in both sEPS and bEPS was higher than the carbohydrate proportion. The average of intracellular microcystins (IMCs) was 0.47 pg/cell on day 15 of culturing, while extracellular microcystins (EMCs) were undetectable. The IMCs were dramatically produced at the exponential phase, followed by EMCs release at the late exponential phase. On day 30, the total microcystins (MCs) production reached 2.67 pg/cell. Based on liquid chromatograph-quadrupole time-of-flight mass spectrometry, three new MCs variants were proposed. This study is the first report of both decarbamoylsaxitoxin (dcSTX) and new MCs congeners synthesized by Microcystis

    Trihalomethanes in Water Supply System and Water Distribution Networks

    Get PDF
    The formation of trihalomethanes (THMs) in natural and treated water from water supply systems is an urgent research area due to the carcinogenic risk they pose. Seasonal effects and pH have captured interest as potential factors affecting THM formation in the water supply and distribution systems. We investigated THM occurrence in the water supply chain, including raw and treated water from water treatment plants (coagulation, sedimentation, sand filtration, ClO2-disinfection processes, and distribution pipelines) in the Chiang Mai municipality, particularly the educational institute area. The effects of two seasons, rainy (September–November 2019) and dry (December 2019–February 2020), acted as surrogates for the water quality profile and THM occurrence. The results showed that humic acid was the main aromatic and organic compound in all the water samples. In the raw water sample, we found a correlation between surrogate organic compounds, including SUVA and dissolved organic carbon (DOC) (R2 = 0.9878). Four species of THMs were detected, including chloroform, bromodichloromethane, dibromochloromethane, and bromoform. Chloroform was the dominant species among the THMs. The highest concentration of total THMs was 189.52 µg/L. The concentration of THMs tended to increase after chlorination when chlorine dioxide and organic compounds reacted in water. The effect of pH on the formation of TTHMs was also indicated during the study. TTHM concentrations trended lower with a pH ≤ 7 than with a pH ≥ 8 during the sampling periods. Finally, in terms of health concerns, the concentration of TTHMs was considered safe for consumption because it was below the standard

    Recent Advancements in the Removal of Cyanotoxins from Water Using Conventional and Modified Adsorbents—A Contemporary Review

    Get PDF
    The prevalence of cyanobacteria is increasing in freshwaters due to climate change, eutrophication, and their ability to adapt and thrive in changing environmental conditions. In response to various environmental pressures, they produce toxins known as cyanotoxins, which impair water quality significantly. Prolonged human exposure to cyanotoxins, such as microcystins, cylindrospermopsin, saxitoxins, and anatoxin through drinking water can cause severe health effects. Conventional water treatment processes are not effective in removing these cyanotoxins in water and advanced water treatment processes are often used instead. Among the advanced water treatment methods, adsorption is advantageous compared to other methods because of its affordability and design simplicity for cyanotoxins removal. This article provides a current review of recent developments in cyanotoxin removal using both conventional and modified adsorbents. Given the different cyanotoxins removal capacities and cost of conventional and modified adsorbents, a future outlook, as well as suggestions are provided to achieve optimal cyanotoxin removal through adsorption
    • …
    corecore