11 research outputs found

    Performance deficits of NK1 receptor knockout mice in the 5 choice serial reaction time task: effects of d Amphetamine, stress and time of day.

    Get PDF
    Background The neurochemical status and hyperactivity of mice lacking functional substance P-preferring NK1 receptors (NK1R-/-) resemble abnormalities in Attention Deficit Hyperactivity Disorder (ADHD). Here we tested whether NK1R-/- mice express other core features of ADHD (impulsivity and inattentiveness) and, if so, whether they are diminished by d-amphetamine, as in ADHD. Prompted by evidence that circadian rhythms are disrupted in ADHD, we also compared the performance of mice that were trained and tested in the morning or afternoon. Methods and Results The 5-Choice Serial Reaction-Time Task (5-CSRTT) was used to evaluate the cognitive performance of NK1R-/- mice and their wildtypes. After training, animals were tested using a long (LITI) and a variable (VITI) inter-trial interval: these tests were carried out with, and without, d-amphetamine pretreatment (0.3 or 1 mg/kg i.p.). NK1R-/- mice expressed greater omissions (inattentiveness), perseveration and premature responses (impulsivity) in the 5-CSRTT. In NK1R-/- mice, perseveration in the LITI was increased by injection-stress but reduced by d-amphetamine. Omissions by NK1R-/- mice in the VITI were unaffected by d-amphetamine, but premature responses were exacerbated by this psychostimulant. Omissions in the VITI were higher, overall, in the morning than the afternoon but, in the LITI, premature responses of NK1R-/- mice were higher in the afternoon than the morning. Conclusion In addition to locomotor hyperactivity, NK1R-/- mice express inattentiveness, perseveration and impulsivity in the 5-CSRTT, thereby matching core criteria for a model of ADHD. Because d-amphetamine reduced perseveration in NK1R-/- mice, this action does not require functional NK1R. However, the lack of any improvement of omissions and premature responses in NK1R-/- mice given d-amphetamine suggests that beneficial effects of this psychostimulant in other rodent models, and ADHD patients, need functional NK1R. Finally, our results reveal experimental variables (stimulus parameters, stress and time of day) that could influence translational studies

    The Neurotoxicity of DOPAL: Behavioral and Stereological Evidence for Its Role in Parkinson Disease Pathogenesis

    Get PDF
    BACKGROUND: The etiology of Parkinson disease (PD) has yet to be fully elucidated. We examined the consequences of injections of 3,4-dihydroxyphenylacetaldehyde (DOPAL), a toxic metabolite of dopamine, into the substantia nigra of rats on motor behavior and neuronal survival. METHODS/PRINCIPAL FINDINGS: A total of 800 nl/rat of DOPAL (1 µg/200 nl) was injected stereotaxically into the substantia nigra over three sites while control animals received similar injections of phosphate buffered saline. Rotational behavior of these rats was analyzed, optical density of striatal tyrosine hydroxylase was calculated, and unbiased stereological counts of the substantia nigra were made. The rats showed significant rotational asymmetry ipsilateral to the lesion, supporting disruption of dopaminergic nigrostriatal projections. Such disruption was verified since the density of striatal tyrosine hydroxylase decreased significantly (p<0.001) on the side ipsilateral to the DOPAL injections when compared to the non-injected side. Stereological counts of neurons stained for Nissl in pars compacta of the substantia nigra significantly decreased (p<0.001) from control values, while counts of those in pars reticulata were unchanged after DOPAL injections. Counts of neurons immunostained for tyrosine hydroxylase also showed a significant (p=0.032) loss of dopaminergic neurons. In spite of significant loss of dopaminergic neurons, DOPAL injections did not induce significant glial reaction in the substantia nigra. CONCLUSIONS: The present study provides the first in vivo quantification of substantia nigra pars compacta neuronal loss after injection of the endogenous toxin DOPAL. The results demonstrate that injections of DOPAL selectively kills SN DA neurons, suggests loss of striatal DA terminals, spares non-dopaminergic neurons of the pars reticulata, and triggers a behavioral phenotype (rotational asymmetry) consistent with other PD animal models. This study supports the "catecholaldehyde hypothesis" as an important link for the etiology of sporadic PD

    Fearing Parkinson’s Disease: Relationships Between Cognition and Emotion

    No full text
    There is a growing interest in elucidating the etiopathogenesis of different neurodegenerative processes, and this chapter particularly focuses on Parkinson’s disease (PD). PD is the second most common neurodegenerative disease affecting 2% of the population over 65 years old, a consequence of the vulnerability of dopaminergic neurons associated with age. It is characterized by well-known motor symptoms, whereas the presence of non-motor symptoms, such as cognitive dysfunctions and emotional disturbances, are still underestimated. The degeneration of the nigrostriatal dopaminergic pathway results in functional-morphological changes in synaptic plasticity and architecture in fundamental areas for the processing of emotional memory (basolateral amygdala and hippocampus). Thereby, the cognitive–emotional deficit would be a critical predictive sign of motor alterations in the pathology progression. The mechanisms involved are still unknown. Currently, no treatment has been shown to modify the evolution of the degenerative process, much less the associated non-motor symptoms. Besides, several studies are advancing in the comprehension of multiple processes involved in the establishment of this neuropathology. This chapter focuses on cognition and emotion interactions in PD and their relevance to patient and caregiver quality of life. To this end, we will address the latest studies about neurocircuitries, regulation networks and possible therapeutic approaches in different parkinsonism experimental models.Fil: Herrera, Macarena Lorena. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Farmacología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; ArgentinaFil: Champarini, Leandro Gabriel. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Farmacología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; ArgentinaFil: Otamendi, Andrea. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Farmacología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; ArgentinaFil: Hereñú, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Farmacología; Argentin
    corecore