4 research outputs found

    Hemoglobin-derived Peptides as Novel Type of Bioactive Signaling Molecules

    No full text
    Most bioactive peptides are generated by proteolytic cleavage of large precursor proteins followed by storage in secretory vesicles from where they are released upon cell stimulation. Examples of such bioactive peptides include peptide neurotransmitters, classical neuropeptides, and peptide hormones. In the last decade, it has become apparent that the breakdown of cytosolic proteins can generate peptides that have biological activity. A case in point and the focus of this review are hemoglobin-derived peptides. In vertebrates, hemoglobin (Hb) consists of a tetramer of two α- and two β-globin chains each containing a prosthetic heme group, and is primarily involved in oxygen delivery to tissues and in redox reactions (Schechter Blood 112:3927–3938, 2008). The presence of α- and/or β-globin chain in tissues besides red blood cells including rodent and human brain and peripheral tissues (Liu et al. Proc Natl Acad Sci USA 96:6643–6647, 1999; Newton et al. J Biol Chem 281:5668–5676, 2006; Wride et al. Mol Vis 9:360–396, 2003; Setton-Avruj Exp Neurol 203:568–578, 2007; Ohyagi et al. Brain Res 635:323–327, 1994; Schelshorn et al. J Cereb Blood Flow Metab 29:585–595, 2009; Richter et al. J Comp Neurol 515:538–547, 2009) suggests that globins and/or derived peptidic fragments might play additional physiological functions in different tissues. In support of this hypothesis, a number of Hb-derived peptides have been identified and shown to have diverse functions (Ivanov et al. Biopoly 43:171–188, 1997; Karelin et al. Neurochem Res 24:1117–1124, 1999). Modern mass spectrometric analyses have helped in the identification of additional Hb peptides (Newton et al. J Biol Chem 281:5668–5676, 2006; Setton-Avruj Exp Neurol 203:568–578, 2007; Gomes et al. FASEB J 23:3020–3029, 2009); the molecular targets for these are only recently beginning to be revealed. Here, we review the status of the Hb peptide field and highlight recent reports on the identification of a molecular target for a novel set of Hb peptides, hemopressins, and the implication of these peptides to normal cell function and disease. The potential therapeutic applications for these Hb-derived hemopressin peptides will also be discussed

    Hemopressin and Other Bioactive Peptides from Cytosolic Proteins: Are These Non-Classical Neuropeptides?

    No full text
    Peptides perform many roles in cell–cell signaling; examples include neuropeptides, hormones, and growth factors. Although the vast majority of known neuropeptides are produced in the secretory pathway, a number of bioactive peptides are derived from cytosolic proteins. For example, the hemopressins are a family of peptides derived from alpha and beta hemoglobin which bind to the CB1 cannabinoid receptor, functioning as agonists or antagonists/inverse agonists depending on the size of the peptide. However, the finding that peptides derived from cytosolic proteins can affect receptors does not prove that these peptides are true endogenous signaling molecules. In order for the hemopressins and other peptides derived from cytosolic proteins to be considered neuropeptide-like signaling molecules, they must be synthesized in brain, they must be secreted in levels sufficient to produce effects, and either their synthesis or secretion should be regulated. If these criteria are met, we propose the name “non-classical neuropeptide” for this category of cytosolic bioactive peptide. This would be analogous to the non-classical neurotransmitters, such as nitric oxide and anandamide, which are not stored in secretory vesicles and released upon stimulation but are synthesized upon stimulation and constitutively released. We review some examples of cytosolic peptides from various protein precursors, describe potential mechanisms of their biosynthesis and secretion, and discuss the possibility that these peptides are signaling molecules in the brain, focusing on the criteria that these peptides would have to fill in order to be considered non-classical neuropeptides
    corecore