16 research outputs found

    Microalgae as second generation biofuel. A review

    Full text link

    Study on disinfestation of pulses using microwave technique

    No full text

    Bioinformatics resource manager v2.3: an integrated software environment for systems biology with microRNA and cross-species analysis tools

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are noncoding RNAs that direct post-transcriptional regulation of protein coding genes. Recent studies have shown miRNAs are important for controlling many biological processes, including nervous system development, and are highly conserved across species. Given their importance, computational tools are necessary for analysis, interpretation and integration of high-throughput (HTP) miRNA data in an increasing number of model species. The Bioinformatics Resource Manager (BRM) v2.3 is a software environment for data management, mining, integration and functional annotation of HTP biological data. In this study, we report recent updates to BRM for miRNA data analysis and cross-species comparisons across datasets.</p> <p>Results</p> <p>BRM v2.3 has the capability to query predicted miRNA targets from multiple databases, retrieve potential regulatory miRNAs for known genes, integrate experimentally derived miRNA and mRNA datasets, perform ortholog mapping across species, and retrieve annotation and cross-reference identifiers for an expanded number of species. Here we use BRM to show that developmental exposure of zebrafish to 30 uM nicotine from 6–48 hours post fertilization (hpf) results in behavioral hyperactivity in larval zebrafish and alteration of putative miRNA gene targets in whole embryos at developmental stages that encompass early neurogenesis. We show typical workflows for using BRM to integrate experimental zebrafish miRNA and mRNA microarray datasets with example retrievals for zebrafish, including pathway annotation and mapping to human ortholog. Functional analysis of differentially regulated (p<0.05) gene targets in BRM indicates that nicotine exposure disrupts genes involved in neurogenesis, possibly through misregulation of nicotine-sensitive miRNAs.</p> <p>Conclusions</p> <p>BRM provides the ability to mine complex data for identification of candidate miRNAs or pathways that drive phenotypic outcome and, therefore, is a useful hypothesis generation tool for systems biology. The miRNA workflow in BRM allows for efficient processing of multiple miRNA and mRNA datasets in a single software environment with the added capability to interact with public data sources and visual analytic tools for HTP data analysis at a systems level. BRM is developed using Java™ and other open-source technologies for free distribution (<url>http://www.sysbio.org/dataresources/brm.stm</url>).</p

    Harvesting, thickening and dewartering microalgae biomass

    No full text
    The recovery and processing of microalgae biomass from a culture media is an essential component for the production of almost all microalgae products. Microalgae recovery techniques can be used individually (single-stage) or in combination (multi-stage) and the choice is often dependent on the species of microalgae, desired product concentration and product quality. A wide range of solid-liquid separation techniques is available and this chapter compares the technologies and assess the technical and economic considerations for each option. The major challenge in selecting an appropriate technology for biofuels production from microalgae is that traditional microalgae concentration processes have generally used energy-intensive unit operations that are expensive.Stephen L. Pahl, Andrew K. Lee, Theo Kalaitzidis, Peter J. Ashman, Suraj Sathe, and David M. Lewi
    corecore