48 research outputs found

    Long-term health-related and economic consequences of short-term outcomes in evaluation of perinatal interventions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many perinatal interventions are performed to improve long-term neonatal outcome. To evaluate the long-term effect of a perinatal intervention follow-up of the child after discharge from the hospital is necessary because serious sequelae from perinatal complications frequently manifest themselves only after several years. However, long-term follow-up is time-consuming, is not in the awareness of obstetricians, is expensive and falls outside the funding-period of most obstetric studies. Consequently, short-term outcomes are often reported instead of the primary long-term end-point. With this project, we will assess the current state of affairs concerning follow-up after obstetric RCTs and we will develop multivariable prediction models for different long-term health outcomes. Furthermore, we would like to encourage other researchers participating in follow-up studies after large obstetric trials (> 350 women) to inform us about their studies so that we can include their follow-up study in our systematic review. We would invite these researchers also to join our effort and to collaborate with us on the external validation of our prediction models.</p> <p>Methods/Design</p> <p>A systematic review of neonatal follow-up after obstetric studies will be performed. All reviews of the Cochrane Pregnancy and Childbirth group will be assessed for reviews on interventions that aimed to improve neonatal outcome. Reviews on interventions primary looking at other aspects than neonatal outcome such as labour progress will also be included when these interventions can change the outcome of the neonate on the short or long-term. Our review will be limited to RCTs with more than 350 women. Information that will be extracted from these RCTs will address whether, how and for how long follow-up has been performed. However, in many cases long-term follow-up of the infants will not be feasible. An alternative solution to limited follow-up could be to develop prediction models to estimate long-term health outcomes of the newborn based on specific perinatal outcomes and other covariates. For the development of multivariable prediction models for several health outcomes, we will use data available from a Dutch cohort study of preterm (< 32 weeks) and/or small for gestational age infants (< 1500 g). These infants were born in The Netherlands in 1983 and followed until they reached the age of 19.</p> <p>Discussion</p> <p>The systematic review will provide insight in the extent and methods used for follow-up assessments after obstetric RCTs in the past. The prediction models can be used by future studies to extrapolate short-term outcomes to a long-term horizon or to indicate for which neonates long-term follow-up is required, as their outcomes (either absence or presence of sequelae) cannot be adequately predicted from short-term outcomes and clinical background characteristics.</p

    Central engine afterglow of Gamma-ray Bursts

    Full text link
    Before 2004, nearly all GRB afterglow data could be understood in the context of the external shocks model. This situation has changed in the past two years, when it became clear that some afterglow components should be attributed to the activity of the central engine; i.e., the {\it central engine afterglow}. We review here the afterglow emission that is directly related to the GRB central engine. Such an interpretation proposed by Katz, Piran & Sari, peculiar in pre-{\it Swift} era, has become generally accepted now.Comment: 4 pages including 1 figure. Presented at the conference "Astrophysics of Compact Objects" (July 1-7, 2007; Huangshan, China

    Gene-Trap Mutagenesis Identifies Mammalian Genes Contributing to Intoxication by Clostridium perfringens ε-Toxin

    Get PDF
    The Clostridium perfringens ε-toxin is an extremely potent toxin associated with lethal toxemias in domesticated ruminants and may be toxic to humans. Intoxication results in fluid accumulation in various tissues, most notably in the brain and kidneys. Previous studies suggest that the toxin is a pore-forming toxin, leading to dysregulated ion homeostasis and ultimately cell death. However, mammalian host factors that likely contribute to ε-toxin-induced cytotoxicity are poorly understood. A library of insertional mutant Madin Darby canine kidney (MDCK) cells, which are highly susceptible to the lethal affects of ε-toxin, was used to select clones of cells resistant to ε-toxin-induced cytotoxicity. The genes mutated in 9 surviving resistant cell clones were identified. We focused additional experiments on one of the identified genes as a means of validating the experimental approach. Gene expression microarray analysis revealed that one of the identified genes, hepatitis A virus cellular receptor 1 (HAVCR1, KIM-1, TIM1), is more abundantly expressed in human kidney cell lines than it is expressed in human cells known to be resistant to ε-toxin. One human kidney cell line, ACHN, was found to be sensitive to the toxin and expresses a larger isoform of the HAVCR1 protein than the HAVCR1 protein expressed by other, toxin-resistant human kidney cell lines. RNA interference studies in MDCK and in ACHN cells confirmed that HAVCR1 contributes to ε-toxin-induced cytotoxicity. Additionally, ε-toxin was shown to bind to HAVCR1 in vitro. The results of this study indicate that HAVCR1 and the other genes identified through the use of gene-trap mutagenesis and RNA interference strategies represent important targets for investigation of the process by which ε-toxin induces cell death and new targets for potential therapeutic intervention

    Clinical chronobiology: a timely consideration in critical care medicine

    Get PDF
    A fundamental aspect of human physiology is its cyclical nature over a 24-h period, a feature conserved across most life on Earth. Organisms compartmentalise processes with respect to time in order to promote survival, in a manner that mirrors the rotation of the planet and accompanying diurnal cycles of light and darkness. The influence of circadian rhythms can no longer be overlooked in clinical settings; this review provides intensivists with an up-to-date understanding of the burgeoning field of chronobiology, and suggests ways to incorporate these concepts into daily practice to improve patient outcomes. We outline the function of molecular clocks in remote tissues, which adjust cellular and global physiological function according to the time of day, and the potential clinical advantages to keeping in time with them. We highlight the consequences of "chronopathology", when this harmony is lost, and the risk factors for this condition in critically ill patients. We introduce the concept of "chronofitness" as a new target in the treatment of critical illness: preserving the internal synchronisation of clocks in different tissues, as well as external synchronisation with the environment. We describe methods for monitoring circadian rhythms in a clinical setting, and how this technology may be used for identifying optimal time windows for interventions, or to alert the physician to a critical deterioration of circadian rhythmicity. We suggest a chronobiological approach to critical illness, involving multicomponent strategies to promote chronofitness (chronobundles), and further investment in the development of personalised, time-based treatment for critically ill patients

    Cyclic Nucleotide Phosphodiesterases and Compartmentation in Normal and Diseased Heart

    Get PDF
    International audienceCyclic nucleotide phosphodiesterases (PDEs) degrade the second messengers cAMP and cGMP, thereby regulating multiple aspects of cardiac function. This highly diverse class of enzymes encoded by 21 genes encompasses 11 families which are not only responsible for the termination of cyclic nucleotide signalling, but are also involved in the generation of dynamic microdomains of cAMP and cGMP controlling specific cell functions in response to various neurohormonal stimuli. In myocardium, the PDE3 and PDE4 families are predominant to degrade cAMP and thereby regulate cardiac excitation-contraction coupling. PDE3 inhibitors are positive inotropes and vasodilators in human, but their use is limited to acute heart failure and intermittent claudication. PDE5 is particularly important to degrade cGMP in vascular smooth muscle, and PDE5 inhibitors are used to treat erectile dysfunction and pulmonary hypertension. However, these drugs do not seem efficient in heart failure with preserved ejection fraction. There is experimental evidence that these PDEs as well as other PDE families including PDE1, PDE2 and PDE9 may play important roles in cardiac diseases such as hypertrophy and heart failure. After a brief presentation of the cyclic nucleotide pathways in cardiac cells and the major characteristics of the PDE superfamily, this chapter will present their role in cyclic nucleotide compartmentation and the current use of PDE inhibitors in cardiac diseases together with the recent research progresses that could lead to a better exploitation of the therapeutic potential of these enzymes in the future
    corecore