2,788 research outputs found
Spontaneous emission interference in negative-refractive-index waveguides
The spontaneous decay of a V-type three-level atom placed in a
negative-refractive-index waveguide is analyzed. We find that in thin
waveguides, highly efficient surface guided modes are supported, which do not
occur in positive index waveguides. In addition, at low absorption, the mode
density and thus spontaneous emission into particular regular guided modes is
enhanced by several orders of magnitude as compared to regular dielectric
waveguides. The asymmetries between emission into the different modes and the
enhancement of particular guided modes allow to induce strong
spontaneous-emission interference between transitions with orthogonal
transition dipole moments.Comment: 7 pages, 7 figure
Superconductivity in Pseudo-Binary Silicide SrNixSi2-x with AlB2-Type Structure
We demonstrate the emergence of superconductivity in pseudo-binary silicide
SrNixSi2-x. The compound exhibits a structural phase transition from the cubic
SrSi2-type structure (P4132) to the hexagonal AlB2-type structure (P6/mmm) upon
substituting Ni for Si at approximately x = 0.1. The hexagonal structure is
stabilized in the range of 0.1 < x < 0.7. The superconducting phase appears in
the vicinity of the structural phase boundary. Ni acts as a nonmagnetic dopant,
as confirmed by the Pauli paramagnetic behavior.Comment: 12 pages, 5 figure
Where are they all from? - sources and sustainability in the ornamental freshwater fish trade
The global trade in ornamental fish involves c. 125 countries worldwide and is worth c. US $15-30 billion each year. This total is dominated (90%) by freshwater fishes, most of which are sourced from breeding facilities located in developing countries, typically in Asia or South America, but also in Israel, USA and Europe. Some fish are obtained from natural (wild) sources in Asia and South America, but the exact percentage of wild-caught fish is difficult to quantify given a lack of reliable data. Although c. 1000 species of freshwater fishes are widely available (from a total of > 5300 on sale), the most dominant freshwater fishes in the market comprise only 30 species from the orders Cyprinodontiformes, Perciformes, Characiformes and Siluriformes. In this perspectives review, illustrative example case studies of wild-fish collecting (Barcelos and Rio Xingu, Brazil) and breeding projects (Java, Indonesia) are described. In addition, wild-collecting expeditions to West Papua, Indonesia are discussed, focused on discovering novel species of rainbowfish (Melanotaeniidae) for breeding in captivity. Sustainability of the aquarium industry is considered in its broadest sense. The aquarium industry has been portrayed as both a major threat to natural ecosystems, but also as being part of the solution in terms of helping to maintain species when they have gone extinct in the wild or offering an income to impoverished citizens who might otherwise engage in much more destructive practices
Breakdown of the few-level approximation in collective systems
The validity of the few-level approximation in dipole-dipole interacting
collective systems is discussed. As example system, we study the archetype case
of two dipole-dipole interacting atoms, each modelled by two complete sets of
angular momentum multiplets. We establish the breakdown of the few-level
approximation by first proving the intuitive result that the dipole-dipole
induced energy shifts between collective two-atom states depend on the length
of the vector connecting the atoms, but not on its orientation, if complete and
degenerate multiplets are considered. A careful analysis of our findings
reveals that the simplification of the atomic level scheme by artificially
omitting Zeeman sublevels in a few-level approximation generally leads to
incorrect predictions. We find that this breakdown can be traced back to the
dipole-dipole coupling of transitions with orthogonal dipole moments. Our
interpretation enables us to identify special geometries in which partial
few-level approximations to two- or three-level systems are valid
Tunable sub-luminal propagation of narrowband x-ray pulses
Group velocity control is demonstrated for x-ray photons of 14.4 keV energy
via a direct measurement of the temporal delay imposed on spectrally narrow
x-ray pulses. Sub-luminal light propagation is achieved by inducing a steep
positive linear dispersion in the optical response of Fe M\"ossbauer
nuclei embedded in a thin film planar x-ray cavity. The direct detection of the
temporal pulse delay is enabled by generating frequency-tunable spectrally
narrow x-ray pulses from broadband pulsed synchrotron radiation. Our
theoretical model is in good agreement with the experimental data.Comment: 8 pages, 4 figure
Interference in the resonance fluorescence of two incoherently coupled transitions
The fluorescence light emitted by a 4-level system in to
configuration driven by a monochromatic laser field and in an external magnetic
field is studied. We show that the spectrum of resonance fluorescence emitted
on the transitions shows a signature of spontaneously generated
interference effects. The degree of interference in the fluorescence spectrum
can be controlled by means of the external magnetic field, provided that the
Land\'e g-factors of the excited and the ground state doublet are different.
For a suitably chosen magnetic field strength, the relative weight of the
Rayleigh line can be completely suppressed, even for low intensities of the
coherent driving field. The incoherent fluorescence spectrum emitted on the
transitions exhibits a very narrow peak whose width and weight depends on
the magnetic field strength. We demonstrate that the spectrum of resonance
fluorescence emitted on the transitions show an indirect signature of
interference. A measurement of the relative peak heights in the spectrum from
the transitions allows to determine the branching ratio of the
spontaneous decay of each excited state into the channel
Relativistic and Radiative Corrections to the Mollow Spectrum
The incoherent, inelastic part of the resonance fluorescence spectrum of a
laser-driven atom is known as the Mollow spectrum [B. R. Mollow, Phys. Rev.
188, 1969 (1969)]. Starting from this level of description, we discuss
theoretical foundations of high-precision spectroscopy using the resonance
fluorescence light of strongly laser-driven atoms. Specifically, we evaluate
the leading relativistic and radiative corrections to the Mollow spectrum, up
to the relative orders of (Z alpha)^2 and alpha(Z alpha)^2, respectively, and
Bloch-Siegert shifts as well as stimulated radiative corrections involving
off-resonant virtual states. Complete results are provided for the hydrogen
1S-2P_{1/2} and 1S-2P_{3/2} transitions; these include all relevant correction
terms up to the specified order of approximation and could directly be compared
to experimental data. As an application, the outcome of such experiments would
allow for a sensitive test of the validity of the dressed-state basis as the
natural description of the combined atom-laser system.Comment: 20 pages, 1 figure; RevTe
Life, Life Support, and Death Principles, Guidelines, Policies and Procedures for Making Decisions That Respect Life
The following is the third edition of a booklet by the American Life League, Inc. The section on Ordinary/Extraordinary Means has been revised. The sections on Quality of Life, Pain, Paired Organ and Non-vital Organ and Tissue Transplant, and Determination of Death have been added. There are other changes throughout the booklet
Coherent control in a decoherence-free subspace of a collective multi-level system
Decoherence-free subspaces (DFS) in systems of dipole-dipole interacting
multi-level atoms are investigated theoretically. It is shown that the
collective state space of two dipole-dipole interacting four-level atoms
contains a four-dimensional DFS. We describe a method that allows to populate
the antisymmetric states of the DFS by means of a laser field, without the need
of a field gradient between the two atoms. We identify these antisymmetric
states as long-lived entangled states. Further, we show that any single-qubit
operation between two states of the DFS can be induced by means of a microwave
field. Typical operation times of these qubit rotations can be significantly
shorter than for a nuclear spin system.Comment: 15 pages, 11 figure
Full counting statistics of laser excited Rydberg aggregates in a one-dimensional geometry
We experimentally study the full counting statistics of few-body Rydberg
aggregates excited from a quasi-one-dimensional Rydberg gas. We measure
asymmetric excitation spectra and increased second and third order statistical
moments of the Rydberg number distribution, from which we determine the average
aggregate size. Direct comparisons with numerical simulations reveal the
presence of liquid-like spatial correlations, and indicate sequential growth of
the aggregates around an initial grain. These findings demonstrate the
importance of dissipative effects in strongly correlated Rydberg gases and
introduce a way to study spatio-temporal correlations in strongly-interacting
many-body quantum systems without imaging.Comment: 6 pages plus supplemen
- âŠ