6 research outputs found

    Nocodazole inhibits macronuclear infection with Holospora obtusa in Paramecium caudatum

    No full text
    Abstract: Holospora obtusa is a Gram-negative bacterium inhabiting the macronucleus of the ciliate Paramecium caudatum. Experimental infection with H. obtusa was carried out under nocodazole treatment. Nocodazole has been shown to cause disassembly of the cytoplasmic microtubules radiating from the cytopharynx and postoral fibers in P. caudatum. Treatment with this drug did not prevent the ingestion of both prey bacteria and H. obtusa, but it reduced the phagosome number and affected cyclosis. In situ hybridization revealed infectious forms of this endobiont very close to the macronucleus, but never inside it. These results indicate that disassembly of microtubules does not impair transportation of the infectious forms of H. obtusa in the cytoplasm, but that it completely blocks the invasion of the nucleus by the bacteria

    Initial steps of infection of the ciliate Paramecium with bacteria Holospora sp.

    No full text
    New light and electron microscope data on the initial steps of endocytobiosis establishment between the ciliate Paramecium and specific intranuclear bacteria Holospora are provided. At the cytoplasmic step of infection bacteria of all Holospora species are found in a vesicle originating from the membrane of the host cell phagosome. The association between host cell microfilaments and the bacterium bearing vesicle may suggest a possible involvement of the ciliate cytoskeleton in the transportation of bacteria to the host cell nucleus. The authors subdivide the process of infection into 6 steps. Some strains of P. caudatum never take up infectious Holospora bacteria in the course of phagocytosis

    Actin-Based Mechanism of Holospora obtusa Trafficking in Paramecium caudatum

    No full text
    Abstract: Holospora obtusa, an alpha-proteobacterium, is an obligate endonuclear pathogen of the ciliate Paramecium caudatum. It is engulfed by the host cell in the course of phagocytosis but soon escapes from the phagosome and is transported across the host cell cytoplasm to the paramecium macronucleus. Electron microscopy reveals a comet-like tail resembling that of Listeria trailing after H. obtusa in the host cytoplasm. In this study we investigated the role of the host cell actin and Arp3 in the process of infection with Holospora. Cytochalasin D treatment significantly reduced the rate of nuclear infection. Using immunocytochemistry and experimental infection of GFP-actin-transfected paramecia we demonstrated that the Paramecium actin1-1 took part in the bacterial escape from the phagosome, its trafficking in the cytoplasm and entry into the host macronucleus. Rapid assembly/disassembly of actin filaments in P. caudatum led to quick loss of actin1-1 from the trails left by H. ..
    corecore