11 research outputs found

    The HITRAN2020 molecular spectroscopic database

    Get PDF
    The HITRAN database is a compilation of molecular spectroscopic parameters. It was established in the early 1970s and is used by various computer codes to predict and simulate the transmission and emission of light in gaseous media (with an emphasis on terrestrial and planetary atmospheres). The HITRAN compilation is composed of five major components: the line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, experimental infrared absorption cross-sections (for molecules where it is not yet feasible for representation in a line-by-line form), collision-induced absorption data, aerosol indices of refraction, and general tables (including partition sums) that apply globally to the data. This paper describes the contents of the 2020 quadrennial edition of HITRAN. The HITRAN2020 edition takes advantage of recent experimental and theoretical data that were meticulously validated, in particular, against laboratory and atmospheric spectra. The new edition replaces the previous HITRAN edition of 2016 (including its updates during the intervening years). All five components of HITRAN have undergone major updates. In particular, the extent of the updates in the HITRAN2020 edition range from updating a few lines of specific molecules to complete replacements of the lists, and also the introduction of additional isotopologues and new (to HITRAN) molecules: SO, CH3F, GeH4, CS2, CH3I and NF3. Many new vibrational bands were added, extending the spectral coverage and completeness of the line lists. Also, the accuracy of the parameters for major atmospheric absorbers has been increased substantially, often featuring sub-percent uncertainties. Broadening parameters associated with the ambient pressure of water vapor were introduced to HITRAN for the first time and are now available for several molecules. The HITRAN2020 edition continues to take advantage of the relational structure and efficient interface available at www.hitran.org and the HITRAN Application Programming Interface (HAPI). The functionality of both tools has been extended for the new edition

    Evaluation of the Serotonergic Genes htr1A, htr1B, htr2A, and slc6A4 in Aggressive Behavior of Golden Retriever Dogs

    Get PDF
    Aggressive behavior displays a high heritability in our study group ofGolden Retriever dogs.Alterations in brain serotonin metabolism have been described in aggressive dogs before. Here, we evaluate whether four genes of the canine serotonergic system, coding for the serotonin receptors 1A, 1B, and 2A, and the serotonin transporter, could play a major role in aggression in Golden Retrievers. We performed mutation screens, linkage analysis, an association study, and a quantitative genetic analysis. There was no systematic difference between the coding DNA sequence of the candidate genes in aggressive and non-aggressiveGoldenRetrievers.An affecteds-only parametric linkage analysis revealed no strong major locus effect on human-directed aggression related to the candidate genes. An analysis of 41 single nucleotide polymorphisms (SNPs) in the 1 Mb regions flanking the genes in 49 unrelated human-directed aggressive and 49 unrelated nonaggressive dogs did not show association of SNP alleles, genotypes, or haplotypes with aggression at the candidate loci. We completed our analyses with a study of the effect of variation in the candidate genes on a collection of aggressionrelated phenotypicmeasures.The effects of the candidate gene haplotypes were estimated using the Restricted Maximum Likelihood method, with the haplotypes included as fixed effects in a linear animal model. We observed no effect of the candidate gene haplotypes on a range of aggression-related phenotypes, thus extending our conclusions to several types of aggressive behavior.We conclude that it is unlikely that these genes play a major role in the variation in aggression in the Golden Retrievers that we studied. Smaller phenotypic effects of these loci could not be ruled out with our sample size
    corecore