29 research outputs found

    SOX2 Co-Occupies Distal Enhancer Elements with Distinct POU Factors in ESCs and NPCs to Specify Cell State

    Get PDF
    SOX2 is a master regulator of both pluripotent embryonic stem cells (ESCs) and multipotent neural progenitor cells (NPCs); however, we currently lack a detailed understanding of how SOX2 controls these distinct stem cell populations. Here we show by genome-wide analysis that, while SOX2 bound to a distinct set of gene promoters in ESCs and NPCs, the majority of regions coincided with unique distal enhancer elements, important cis-acting regulators of tissue-specific gene expression programs. Notably, SOX2 bound the same consensus DNA motif in both cell types, suggesting that additional factors contribute to target specificity. We found that, similar to its association with OCT4 (Pou5f1) in ESCs, the related POU family member BRN2 (Pou3f2) co-occupied a large set of putative distal enhancers with SOX2 in NPCs. Forced expression of BRN2 in ESCs led to functional recruitment of SOX2 to a subset of NPC-specific targets and to precocious differentiation toward a neural-like state. Further analysis of the bound sequences revealed differences in the distances of SOX and POU peaks in the two cell types and identified motifs for additional transcription factors. Together, these data suggest that SOX2 controls a larger network of genes than previously anticipated through binding of distal enhancers and that transitions in POU partner factors may control tissue-specific transcriptional programs. Our findings have important implications for understanding lineage specification and somatic cell reprogramming, where SOX2, OCT4, and BRN2 have been shown to be key factors

    Comparative genomics as a foundation for evo-devo studies in birds

    No full text
    © Springer Science+Business Media LLC 2017. Developmental genomics is a rapidly growing field, and high-quality genomes are a useful foundation for comparative developmental studies. A high-quality genome forms an essential reference onto which the data from numerous assays and experiments, including ChIP-seq, ATAC-seq, and RNA-seq, can be mapped. A genome also streamlines and simplifies the development of primers used to amplify putative regulatory regions for enhancer screens, cDNA probes for in situ hybridization, microRNAs (miRNAs) or short hairpin RNAs (shRNA) for RNA interference (RNAi) knockdowns, mRNAs for misexpression studies, and even guide RNAs (gRNAs) for CRISPR knockouts. Finally, much can be gleaned from comparative genomics alone, including the identification of highly conserved putative regulatory regions. This chapter provides an overview of laboratory and bioinformatics protocols for DNA extraction, library preparation, library quantification, and genome assembly, from fresh or frozen tissue to a draft avian genome. Generating a high-quality draft genome can provide a developmental research group with excellent resources for their study organism, opening the doors to many additional assays and experiments.Link_to_subscribed_fulltex

    Bidirectional Wnt signaling between endoderm and mesoderm confers tracheal identity in mouse and human cells

    Get PDF
    呼吸器の発生をつかさどるメカニズムの解明 --発生現象の発見に基づくES細胞から気管組織の作出へ--. 京都大学プレスリリース. 2020-09-03.The periodic cartilage and smooth muscle structures in mammalian trachea are derived from tracheal mesoderm, and tracheal malformations result in serious respiratory defects in neonates. Here we show that canonical Wnt signaling in mesoderm is critical to confer trachea mesenchymal identity in human and mouse. At the initiation of tracheal development, endoderm begins to express Nkx2.1, and then mesoderm expresses the Tbx4 gene. Loss of β-catenin in fetal mouse mesoderm causes loss of Tbx4+ tracheal mesoderm and tracheal cartilage agenesis. The mesenchymal Tbx4 expression relies on endodermal Wnt activation and Wnt ligand secretion but is independent of known Nkx2.1-mediated respiratory development, suggesting that bidirectional Wnt signaling between endoderm and mesoderm promotes trachea development. Activating Wnt, Bmp signaling in mouse embryonic stem cell (ESC)-derived lateral plate mesoderm (LPM) generates tracheal mesoderm containing chondrocytes and smooth muscle cells. For human ESC-derived LPM, SHH activation is required along with WNT to generate proper tracheal mesoderm. Together, these findings may contribute to developing applications for human tracheal tissue repair
    corecore