7,745 research outputs found
Dendriform-Tree Setting for Fully Non-commutative Fliess Operators
This paper provides a dendriform-tree setting for Fliess operators with
matrix-valued inputs. This class of analytic nonlinear input-output systems is
convenient, for example, in quantum control. In particular, a description of
such Fliess operators is provided using planar binary trees. Sufficient
conditions for convergence of the defining series are also given
Defect chemistry and transport properties of BaxCe0.85M0.15O3-d
The site-incorporation mechanism of M3+ dopants into A2+B4+O3 perovskites controls the overall defect chemistry and thus their transport properties. For charge-balance reasons, incorporation onto the A2+-site would require the creation of negatively charged point defects (such as cation vacancies), whereas incorporation onto the B4+-site is accompanied by the generation of positively charged defects, typically oxygen vacancies. Oxygen-vacancy content, in turn, is relevant to proton-conducting oxides in which protons are introduced via the dissolution of hydroxyl ions at vacant oxygen sites. We propose here, on the basis of x-ray powder diffraction studies, electron microscopy, chemical analysis, thermal gravimetric analysis, and alternating current impedance spectroscopy, that nominally B-site doped barium cerate can exhibit dopant partitioning as a consequence of barium evaporation at elevated temperatures. Such partitioning and the presence of significant dopant concentrations on the A-site negatively impact proton conductivity. Specific materials examined are BaxCe0.85M0.15O3-d (x = 0.85 - 1.20; M = Nd, Gd, Yb). The compositional limits for the maximum A-site incorporation are experimentally determined to be: (Ba0.919Nd0.081)(Ce0.919Nd0.081)O3, (Ba0.974Gd0.026)(Ce0.872Gd0.128)O2.875, and Ba(Ce0.85Yb0.15)O2.925. As a consequence of the greater ability of larger cations to exist on the Ba site, the H2O adsorption and proton conductivities of large-cation doped barium cerates are lower than those of small-cation doped analogs
Identities among relations for higher-dimensional rewriting systems
We generalize the notion of identities among relations, well known for
presentations of groups, to presentations of n-categories by polygraphs. To
each polygraph, we associate a track n-category, generalizing the notion of
crossed module for groups, in order to define the natural system of identities
among relations. We relate the facts that this natural system is finitely
generated and that the polygraph has finite derivation type.Comment: 16 pages, corrected version after review, to appear in S\'eminaires
et Congr\`e
Why do borrowers pledge collateral? new empirical evidence on the role of asymmetric information
An important theoretical literature motivates collateral as a mechanism that mitigates adverse selection, credit rationing, and other inefficiencies that arise when borrowers hold ex ante private information. There is no clear empirical evidence regarding the central implication of this literature—that a reduction in asymmetric information reduces the incidence of collateral. We exploit exogenous variation in lender information related to the adoption of an information technology that reduces ex ante private information, and compare collateral outcomes before and after adoption. Our results are consistent with this central implication of the private-information models and support the empirical importance of this theory.
Debt maturity, risk, and asymmetric information
We test the implications of Flannery’s (1986) and Diamond’s (1991) models concerning the effects of risk and asymmetric information in determining debt maturity, and we examine the overall importance of informational asymmetries in debt maturity choices. We employ data from more than 6,000 commercial loans from 53 large U.S. banks. Our results for low-risk firms are consistent with the predictions of both theoretical models, but our findings for high-risk firms conflict with the predictions of Diamond’s model and with much of the empirical literature. Our findings also suggest a strong quantitative role for asymmetric information in explaining debt maturity.
Condensation in an Economic Model with Brand Competition
We present a linear agent based model on brand competition. Each agent
belongs to one of the two brands and interacts with its nearest neighbors. In
the process the agent can decide to change to the other brand if the move is
beneficial. The numerical simulations show that the systems always condenses
into a state when all agents belong to a single brand. We study the
condensation times for different parameters of the model and the influence of
different mechanisms to avoid condensation, like anti monopoly rules and brand
fidelity.Comment: Accepted in: International Journal of Modern Physics
- …