317 research outputs found
Supplier-induced demand for psychiatric admissions in Northern New England
The development of hospital service areas (HSAs) using small area analysis has been useful in examining variation in medical and surgical care; however, the techniques of small area analysis are underdeveloped in understanding psychiatric admission rates. We sought to develop these techniques in order to understand the relationship between psychiatric bed supply and admission rates in Northern New England. Our primary hypotheses were that there would be substantial variation in psychiatric admission across geographic settings and that bed availability would be positively correlated with admission rates, reflecting a supplier-induced demand phenomenon. Our secondary hypothesis was that the construction of psychiatric HSAs (PHSAs) would yield more meaningful results than the use of existing general medical hospital service areas
A novel SNP analysis method to detect copy number alterations with an unbiased reference signal directly from tumor samples
<p>Abstract</p> <p>Background</p> <p>Genomic instability in cancer leads to abnormal genome copy number alterations (CNA) as a mechanism underlying tumorigenesis. Using microarrays and other technologies, tumor CNA are detected by comparing tumor sample CN to normal reference sample CN. While advances in microarray technology have improved detection of copy number alterations, the increase in the number of measured signals, noise from array probes, variations in signal-to-noise ratio across batches and disparity across laboratories leads to significant limitations for the accurate identification of CNA regions when comparing tumor and normal samples.</p> <p>Methods</p> <p>To address these limitations, we designed a novel "Virtual Normal" algorithm (VN), which allowed for construction of an unbiased reference signal directly from test samples within an experiment using any publicly available normal reference set as a baseline thus eliminating the need for an in-lab normal reference set.</p> <p>Results</p> <p>The algorithm was tested using an optimal, paired tumor/normal data set as well as previously uncharacterized pediatric malignant gliomas for which a normal reference set was not available. Using Affymetrix 250K Sty microarrays, we demonstrated improved signal-to-noise ratio and detected significant copy number alterations using the VN algorithm that were validated by independent PCR analysis of the target CNA regions.</p> <p>Conclusions</p> <p>We developed and validated an algorithm to provide a virtual normal reference signal directly from tumor samples and minimize noise in the derivation of the raw CN signal. The algorithm reduces the variability of assays performed across different reagent and array batches, methods of sample preservation, multiple personnel, and among different laboratories. This approach may be valuable when matched normal samples are unavailable or the paired normal specimens have been subjected to variations in methods of preservation.</p
Percutaneous injuries among dental professionals in Washington State
BACKGROUND: Percutaneous exposure incidents facilitate transmission of bloodborne pathogens such as human immunodeficiency virus (HIV), hepatitis C virus (HCV) and hepatitis B virus (HBV). This study was conducted to identify the circumstances and equipment related to percutaneous injuries among dental professionals. METHODS: We used workers' compensation claims submitted to the Department of Labor and Industries State Fund during a 7-year period (1995 through 2001) in Washington State for this study. We used the statement submitted by the injured worker on the workers' compensation claim form to determine the circumstances surrounding the injury including the type of activity and device involved. RESULTS: Of a total of 4,695 accepted State Fund percutaneous injury claims by health care workers (HCWs), 924 (20%) were submitted by dental professionals. Out of 924 percutaneous injuries reported by dental professionals 894 (97%) were among dental health care workers in non-hospital settings, including dentists (66, 7%), dental hygienists (61, 18%) and dental assistants (667, 75%). The majority of those reporting were females (638, 71%). Most (781, 87%) of the injuries involved syringes, dental instruments (77, 9%), and suture needles (23%). A large proportion (90%) of injuries occurred in offices and clinics of dentists, while remainder occurred in offices of clinics and of doctors of medicine (9%), and a few in specialty outpatient facilities (1%). Of the 894 dental health care workers with percutaneous injuries, there was evidence of HBV in 6 persons, HCV in 30 persons, HIV in 3 persons and both HBV and HVC (n = 2) exposure. CONCLUSION: Out of hospital percutaneous injuries are a substantial risk to dental health professionals in Washington State. Improved work practices and safer devices are needed to address this risk
Integrated genomics of ovarian xenograft tumor progression and chemotherapy response
<p>Abstract</p> <p>Background</p> <p>Ovarian cancer is the most deadly gynecological cancer with a very poor prognosis. Xenograft mouse models have proven to be one very useful tool in testing candidate therapeutic agents and gene function <it>in vivo</it>. In this study we identify genes and gene networks important for the efficacy of a pre-clinical anti-tumor therapeutic, MT19c.</p> <p>Methods</p> <p>In order to understand how ovarian xenograft tumors may be growing and responding to anti-tumor therapeutics, we used genome-wide mRNA expression and DNA copy number measurements to identify key genes and pathways that may be critical for SKOV-3 xenograft tumor progression. We compared SKOV-3 xenografts treated with the ergocalciferol derived, MT19c, to untreated tumors collected at multiple time points. Cell viability assays were used to test the function of the PPARγ agonist, Rosiglitazone, on SKOV-3 cell growth.</p> <p>Results</p> <p>These data indicate that a number of known survival and growth pathways including Notch signaling and general apoptosis factors are differentially expressed in treated vs. untreated xenografts. As tumors grow, cell cycle and DNA replication genes show increased expression, consistent with faster growth. The steroid nuclear receptor, PPARγ, was significantly up-regulated in MT19c treated xenografts. Surprisingly, stimulation of PPARγ with Rosiglitazone reduced the efficacy of MT19c and cisplatin suggesting that PPARγ is regulating a survival pathway in SKOV-3 cells. To identify which genes may be important for tumor growth and treatment response, we observed that MT19c down-regulates some high copy number genes and stimulates expression of some low copy number genes suggesting that these genes are particularly important for SKOV-3 xenograft growth and survival.</p> <p>Conclusions</p> <p>We have characterized the time dependent responses of ovarian xenograft tumors to the vitamin D analog, MT19c. Our results suggest that PPARγ promotes survival for some ovarian tumor cells. We propose that a combination of regulated expression and copy number can identify genes that are likely important for chemotherapy response. Our findings suggest a new approach to identify candidate genes that are critical for anti-tumor therapy.</p
Determining Frequent Patterns of Copy Number Alterations in Cancer
Cancer progression is often driven by an accumulation of genetic changes but also accompanied by increasing genomic instability. These processes lead to a complicated landscape of copy number alterations (CNAs) within individual tumors and great diversity across tumor samples. High resolution array-based comparative genomic hybridization (aCGH) is being used to profile CNAs of ever larger tumor collections, and better computational methods for processing these data sets and identifying potential driver CNAs are needed. Typical studies of aCGH data sets take a pipeline approach, starting with segmentation of profiles, calls of gains and losses, and finally determination of frequent CNAs across samples. A drawback of pipelines is that choices at each step may produce different results, and biases are propagated forward. We present a mathematically robust new method that exploits probe-level correlations in aCGH data to discover subsets of samples that display common CNAs. Our algorithm is related to recent work on maximum-margin clustering. It does not require pre-segmentation of the data and also provides grouping of recurrent CNAs into clusters. We tested our approach on a large cohort of glioblastoma aCGH samples from The Cancer Genome Atlas and recovered almost all CNAs reported in the initial study. We also found additional significant CNAs missed by the original analysis but supported by earlier studies, and we identified significant correlations between CNAs
Researchers' experience with project management in health and medical research: Results from a post-project review
<p>Abstract</p> <p>Background</p> <p>Project management is widely used to deliver projects on time, within budget and of defined quality. However, there is little published information describing its use in managing health and medical research projects. We used project management in the <it>Alcohol and Pregnancy Project </it>(2006-2008) <url>http://www.ichr.uwa.edu.au/alcoholandpregnancy</url> and in this paper report researchers' opinions on project management and whether it made a difference to the project.</p> <p>Methods</p> <p>A national interdisciplinary group of 20 researchers, one of whom was the project manager, formed the Steering Committee for the project. We used project management to ensure project outputs and outcomes were achieved and all aspects of the project were planned, implemented, monitored and controlled. Sixteen of the researchers were asked to complete a self administered questionnaire for a post-project review.</p> <p>Results</p> <p>The project was delivered according to the project protocol within the allocated budget and time frame. Fifteen researchers (93.8%) completed a questionnaire. They reported that project management increased the effectiveness of the project, communication, teamwork, and application of the interdisciplinary group of researchers' expertise. They would recommend this type of project management for future projects.</p> <p>Conclusions</p> <p>Our post-project review showed that researchers comprehensively endorsed project management in the <it>Alcohol and Pregnancy Project </it>and agreed that project management had contributed substantially to the research. In future, we will project manage new projects and conduct post-project reviews. The results will be used to encourage continuous learning and continuous improvement of project management, and provide greater transparency and accountability of health and medical research. The use of project management can benefit both management and scientific outcomes of health and medical research projects.</p
A cross-sectional study of different patterns of oral contraceptive use among premenopausal women and circulating IGF-1: implications for disease risk
<p>Abstract</p> <p>Background</p> <p>Insulin-like growth factor-1 (IGF-1) is important in normal growth, development, and homeostasis. Current use of oral contraceptives (OC) decreases IGF-1 concentrations; however, the effect of past use, age/timing of use, and type of OC used on IGF-1 levels is unknown. OC are the most commonly used form of birth control worldwide. Both IGF-1 and OC use have been linked to premenopausal breast and colorectal cancers, osteoporosis and cardiovascular disease (CVD). Understanding the effects of different patterns of OC use on IGF-1 levels may offer insight into its influence on disease risk in young women.</p> <p>Methods</p> <p>In a cross-sectional study of 328 premenopausal women ages 18 to 21 and 31 to 40 we examined the relationship between different patterns of OC use and circulating IGF-1 using adjusted linear regression analysis. Information on OC use was obtained through an interviewer administered questionnaire. Plasma IGF-1 was assessed with enzyme linked immunosorbent assay (ELISA).</p> <p>Results</p> <p>Among women aged 18 to 21, ever OC use was significantly associated with decreased IGF-1 levels compared to never use (β = -57.2 ng/ml, 95% confidence interval (CI): -88.7, -25.8). Among women aged 31 to 40, past users who first used OC at 25 years of age or older (β = 43.8 ng/ml, 95% CI: 8.8, 78.8), in the last 15 years (β = 35.1 ng/ml, 95% CI: 9.3, 61.0) or after 1995 (β = 46.6 ng/ml, 95% CI: 13.4, 79.8) had significantly higher IGF-1 levels compared to never users.</p> <p>Conclusion</p> <p>This is the first study to highlight the long term effects of OC use after cessation on IGF-1 levels among premenopausal women, which previously were thought to be transitory. Future studies of past use and IGF-1 levels are required and must consider age/timing of use and type/generation of OC used. Additional studies are needed to confirm the potential mediation of IGF-1 levels in the links between OC use and health outcomes.</p
Bioinformatics approaches for cross-species liver cancer analysis based on microarray gene expression profiling
BACKGROUND: The completion of the sequencing of human, mouse and rat genomes and knowledge of cross-species gene homologies enables studies of differential gene expression in animal models. These types of studies have the potential to greatly enhance our understanding of diseases such as liver cancer in humans. Genes co-expressed across multiple species are most likely to have conserved functions. We have used various bioinformatics approaches to examine microarray expression profiles from liver neoplasms that arise in albumin-SV40 transgenic rats to elucidate genes, chromosome aberrations and pathways that might be associated with human liver cancer. RESULTS: In this study, we first identified 2223 differentially expressed genes by comparing gene expression profiles for two control, two adenoma and two carcinoma samples using an F-test. These genes were subsequently mapped to the rat chromosomes using a novel visualization tool, the Chromosome Plot. Using the same plot, we further mapped the significant genes to orthologous chromosomal locations in human and mouse. Many genes expressed in rat 1q that are amplified in rat liver cancer map to the human chromosomes 10, 11 and 19 and to the mouse chromosomes 7, 17 and 19, which have been implicated in studies of human and mouse liver cancer. Using Comparative Genomics Microarray Analysis (CGMA), we identified regions of potential aberrations in human. Lastly, a pathway analysis was conducted to predict altered human pathways based on statistical analysis and extrapolation from the rat data. All of the identified pathways have been known to be important in the etiology of human liver cancer, including cell cycle control, cell growth and differentiation, apoptosis, transcriptional regulation, and protein metabolism. CONCLUSION: The study demonstrates that the hepatic gene expression profiles from the albumin-SV40 transgenic rat model revealed genes, pathways and chromosome alterations consistent with experimental and clinical research in human liver cancer. The bioinformatics tools presented in this paper are essential for cross species extrapolation and mapping of microarray data, its analysis and interpretation
- …