12 research outputs found

    Evaluation of appendicitis risk prediction models in adults with suspected appendicitis

    Get PDF
    Background Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis. Methods A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis). Results Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent). Conclusion Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified

    Search for jet quenching effects in high-multiplicity pp collisions at √s=13 TeV via di-jet acoplanarity

    Full text link

    Measurements of jet quenching using semi-inclusive hadron plus jet distributions in pp and central Pb-Pb collisions at √sNN=5.02 TeV

    Full text link

    Measurement of the radius dependence of charged-particle jet suppression in Pb–Pb collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:msub><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">NN</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>5.02</mml:mn><mml:mspace width="0.25em"/><mml:mtext>TeV</mml:mtext></mml:math>

    Full text link
    The ALICE Collaboration reports a differential measurement of inclusive jet suppression using pp and Pb–Pb collision data at a center-of-mass energy per nucleon–nucleon collision sNN=5.02 TeV. Charged-particle jets are reconstructed using the anti-kT algorithm with resolution parameters R=0.2, 0.3, 0.4, 0.5, and 0.6 in pp collisions and R=0.2, 0.4, 0.6 in central (0–10%), semi-central (30–50%), and peripheral (60–80%) Pb–Pb collisions. A novel approach based on machine learning is employed to mitigate the influence of jet background. This enables measurements of inclusive jet suppression in new regions of phase space, including down to the lowest jet pT≥40 GeV/c at R=0.6 in central Pb–Pb collisions. This is an important step for discriminating different models of jet quenching in the quark–gluon plasma. The transverse momentum spectra, nuclear modification factors, derived cross section, and nuclear modification factor ratios for different jet resolution parameters of charged-particle jets are presented and compared to model predictions. A mild dependence of the nuclear modification factor ratios on collision centrality and resolution parameter is observed. The results are compared to a variety of jet-quenching models with varying levels of agreement

    Prompt and non-prompt J/ψ production at midrapidity in Pb-Pb collisions at √sNN=5.02 TeV

    Full text link

    Measurements of inclusive J/ψ production at midrapidity and forward rapidity in Pb–Pb collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:msub><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">NN</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:msqrt></mml:math> = 5.02 TeV

    Full text link
    The measurements of the inclusive J/ψ yield at midrapidity (|y|<0.9) and forward rapidity (2.5 <y< 4) in Pb–Pb collisions at sNN=5.02 TeV with the ALICE detector at the LHC are reported. The inclusive J/ψ production yields and nuclear modification factors, RAA, are measured as a function of the collision centrality, J/ψ transverse momentum (pT), and rapidity. The J/ψ average transverse momentum and squared transverse momentum (〈pT〉 and 〈pT2〉) are evaluated as a function of the centrality at midrapidity. Compared to the previous ALICE publications, here the entire Pb–Pb collisions dataset collected during the LHC Run 2 is used, which improves the precision of the measurements and extends the pT coverage. The pT-integrated RAA shows a hint of an increasing trend towards unity from semicentral to central collisions at midrapidity, while it is flat at forward rapidity. The pT-differential RAA shows a strong suppression at high pT with less suppression at low pT where it reaches a larger value at midrapidity compared to forward rapidity. The ratio of the pT-integrated yields of J/ψ to those of D0 mesons is reported for the first time for the central and semicentral event classes at midrapidity. Model calculations implementing charmonium production via the coalescence of charm quarks and antiquarks during the fireball evolution (transport models) or in a statistical approach with thermal weights are in good agreement with the data at low pT. At higher pT, the data are well described by transport models and a model based on energy loss in the strongly-interacting medium produced in nuclear collisions at the LHC

    Modification of charged-particle jets in event-shape engineered Pb–Pb collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:msub><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">NN</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>5.02</mml:mn></mml:math> TeV

    Get PDF
    Charged-particle jet yields have been measured in semicentral Pb–Pb collisions at center-of-mass energy per nucleon–nucleon collision sNN=5.02 TeV with the ALICE detector at the LHC. These yields are reported as a function of the jet transverse momentum, and further classified by their angle with respect to the event plane and the event shape, characterized by ellipticity, in an effort to study the path-length dependence of jet quenching. Jets were reconstructed at midrapidity from charged-particle tracks using the anti-kT algorithm with resolution parameters R = 0.2 and 0.4, with event-plane angle and event-shape values determined using information from forward scintillating detectors. The results presented in this letter show that, in semicentral Pb–Pb collisions, there is no significant difference between jet yields in predominantly isotropic and elliptical events. However, out-of-plane jets are observed to be more suppressed than in-plane jets. Further, this relative suppression is greater for low transverse momentum (< 50 GeV/c) R = 0.2 jets produced in elliptical events, with out-of-plane to in-plane jet-yield ratios varying up to 5.2σ between different event-shape classes. These results agree with previous studies indicating that jets experience azimuthally anisotropic suppression when traversing the QGP medium, and can provide additional constraints on the path-length dependence of jet energy loss
    corecore